Bhardwaj, Hema and Sumana, Gajjala and Marquette, Christophe A. (2020) A label-free ultrasensitive microfluidic surface Plasmon resonance biosensor for Aflatoxin B-1 detection using nanoparticles integrated gold chip. Food Chemistry, 307. pp. 125530-125536. ISSN 0308-8146

[img] PDF - Published Version
Restricted to Registered users only

Download (1284Kb) | Request a copy

Abstract

The Surface Plasmon resonance (SPR) based label-free detection of small targeted molecules is a great challenge and require substantial signal amplification for the accurate and precise quantification. The incorporation of noble metal nanoparticles (NPs) like gold (Au) NPs for the fabrication of SPR biosensor has shown remarkable impact both for anchoring the signal amplification and generate plasmonic resonant coupling between NPs and chip surface. In this work, we present comparative studies related to the fabrication of self-assembled monolayer (SAM) and the influence of AuNPs on Au chip for Aflatoxin B-1 (AFB(1)) detection using SPRi apparatus. The SAM Au chip was sequentially modified by EDC-NHS crosslinkers, grafting of protein-A and finally interaction with anti-AFB(1) antibodies. Similar multilayer chip surface was prepared using functionalized lipoic acid AuNPs deposited on SAM Au chips followed by in situ activation of functional groups using EDC-NHS crosslinkers, grafting of protein-A and immobilization of anti-AFB(1) antibodies. This multilayer functionalized AuNPs modified Au chip was successfully utilized for AFB(1) detection ranging from 0.01 to 50 nM with a limit of detection of 0.003 nM. When compared to bare self-assembled Au chip which was shown to exhibit a limit of detection of 0.19 nM and a linear detection ranging from 1 to 50 nM, the AuNPs modified Au chip was proven to clearly be a better analytical tool. Finally, validation of the proposed biosensor was evaluated by spiked wheat samples and average recoveries (93 and 90.1%) were found to be acceptable.

Item Type: Article
Additional Information: Copyright for this article belongs to M/s Elsevier.
Subjects: Chemistry
Food Science & Technology
Applied Physics/Condensed Matter
Divisions: UNSPECIFIED
Depositing User: Mr. Yogesh Joshi
Date Deposited: 09 Nov 2021 11:16
Last Modified: 09 Nov 2021 11:16
URI: http://npl.csircentral.net/id/eprint/4558

Actions (login required)

View Item View Item