Zequine, Camila and Ranaweera, C. K. and Wang, Z. and Dvornic, Petar R. and Kahol, P. K. and Singh, Sweta and Tripathi, Prashant and Srivastav, O. N. and Singh, Satbir and Gupta, Bipin Kumar and Gupta, Gautam and Gupta, Ram K.
(2017)
High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach.
Scientific Reports, 7 (1174).
pp. 1-12.
ISSN 2045-2322
Abstract
In search of affordable, flexible, lightweight, efficient and stable supercapacitors, metal oxides have been shown to provide high charge storage capacity but with poor cyclic stability due to structural damage occurring during the redox process. Here, we develop an efficient flexible supercapacitor obtained by carbonizing abundantly available and recyclable jute. The active material was synthesized from jute by a facile hydrothermal method and its electrochemical performance was further enhanced by chemical activation. Specific capacitance of 408 F/g at 1 mV/s using CV and 185 F/g at 500 mA/g using charge-discharge measurements with excellent flexibility (similar to 100% retention in charge storage capacity on bending) were observed. The cyclic stability test confirmed no loss in the charge storage capacity of the electrode even after 5,000 charge-discharge measurements. In addition, a supercapacitor device fabricated using this carbonized jute showed promising specific capacitance of about 51 F/g, and improvement of over 60% in the charge storage capacity on increasing temperature from 5 to 75 degrees C. Based on these results, we propose that recycled jute should be considered for fabrication of high performance flexible energy storage devices at extremely low cost.
Actions (login required)
|
View Item |