Superconductivity of various borides: The role of stretched c-parameter

Monika Mudgel, ¹ V. P. S. Awana, ^{1,a)} H. Kishan, ¹ I. Felner, ² Dr. G. A. Alvarez, ³ and G. L. Bhalla

(Presented 13 November 2008; received 16 September 2008; accepted 24 November 2008; published online 6 March 2009)

The superconductivity of MgB₂, AlB₂, NbB_{2+x}, and TaB_{2+x} is intercompared. The stretched c-lattice parameter (c=3.52 Å) of MgB₂ in comparison to NbB_{2.4} (c=3.32 Å) and AlB₂ (c=3.25 Å) decides empirically the population of their π and σ bands and as a result their transition temperature T_c values, respectively, at 39 and 9.5 K for the first two and no superconductivity for the later. The nonstoichiometry induces an increase in c parameter with Boron excess both in NbB_{2+x} and TaB_{2+x}. Magnetization (M-T) and resistivity measurements (ρ -T) in case of niobium boride samples show the absence of superconductivity in stoichiometric NbB₂ sample (c=3.26 Å) while a clear diamagnetic signal and a ρ =0 transition for boron excess NbB_{2+x} samples. On the other hand, superconductivity is not achieved in TaB_{2+x} case. The probable reason behind is the comparatively lesser or insufficient stretching of c parameter. © 2009 American Institute of Physics.

[DOI: 10.1063/1.3072719]

I. INTRODUCTION

The superconductivity in the family of AlB₂ type diborides like TaB₂, NbB₂, and ZrB₂ was boost up with the discovery of MgB₂ superconductor. But in the comparison of MgB₂, very few reports exist on other diborides; even the existence of superconductivity is suspected in some of the diborides. For example, ZrB₂ is reported to have a T_c of 5.5 K by Gasprov *et al.*, whereas Leyarovska and Leyarovski report no transition. Similarly, Gasprov *et al.* and others^{2–5} have reported no observation of superconductivity in TaB₂, while Kackzorowski *et al.* report a transition temperature of 9.5 K. The results for NbB₂ are even more diverse. Gasprov *et al.*, and Kackzorowski *et al.* and others^{6,7} report no superconductivity, while many others^{3,8,9} report different values of transition temperature in the range of 0.62–9.2 K.

Band structure calculations in MgB_2 reveal that T_c increases with increase in c parameter. Working on the same idea, NbB_{2+x} and TaB_{2+x} samples are checked for existence of superconductivity and the systematic comparison in both NbB_{2+x} and TaB_{2+x} is carried out. The thermoelectric power of stoichiometric samples of MgB_2 , AlB_2 , and NbB_2 is also intercompared.

II. EXPERIMENTAL

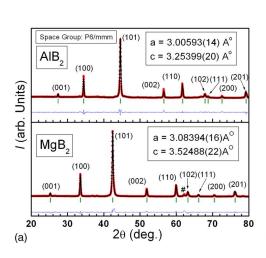
The polycrystalline samples of MgB_2 , AlB_2 , NbB_{2+x} (x = 0.0 to 0.8), and TaB_{2+x} (x = 0.0 to 0.8) were prepared by simple solid-state reaction route. See our Refs. 11 and 12. X-ray diffraction patterns done on Rigaku-Miniflex-II and

Rietveld analysis was done by Fullprof program-2007. For details of other measurements, see Refs. 12 and 13.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the x-ray diffraction patterns for MgB₂ and AlB₂, while Fig. 1(b) shows the same for NbB₂, NbB_{2.4}, TaB₂, and TaB_{2.4} samples. In order to confirm the phase purity, Rietveld refinement is done for all the samples in the space group P6/mmm No. 191. There is hardly any difference between the experimentally observed and theoretically Rietveld determined x-ray profiles except a small MgO peak in case of MgB₂ shown by #. We observe that the (002) peak shifts toward lower angle side with the boron excess in both NbB₂ and TaB₂ cases, which results in increase in c parameter. The systematic variation in the parameters can be seen from Table I. There is a slight decrease in a parameter with increasing boron content in both NbB_{2+x} and TaB_{2+x} . In case of NbB_{2+x}, c parameter increases continuously up to x=0.4 and then saturates further with negligible up and downs, but in TaB_{2+x} , c parameter increases considerably but only up to x=0.2 sample and saturates thereafter. The structural information is in well confirmation with the literature. 6,14–16 Although the a and c values for TaB_{2+x} samples match quantitatively with the earlier reports^{5,16} but differ in respect to corresponding compositions. MgB2 is found to be a superconductor with T_c of about 39 K while AlB₂ is a nonsuperconductor. 11,13

Magnetization versus temperature (*M-T*) plot including both zero field cooled and field cooled curves is shown in the main panel of Fig. 2(a) for NbB_{2.4} sample in the temperature range of 5–12 K. The NbB_{2.4} sample shows a clear diamagnetic signal at about 9.5 K, implying that it is a superconductor. The lower inset in Fig. 2(a) shows magnetization versus temperature curves for NbB₂ sample in the temperature


¹National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India

²Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem-91904, Israel

³Institute for Superconducting and Electronic Materials, University of Wollongong, Australia

⁴Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India

a) Author to whom correspondence should be addressed. FAX: 0091-11-45609310. Tel.: 0091-11-45609210. Electronic mail: awana@mail.nplindia.ernet.

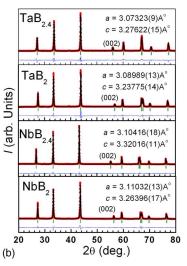


FIG. 1. (Color online) Rietveld refined plots for (a) MgB2 and AlB2 samples and (b) NbB₂, NbB_{2,4}, TaB₂, and TaB_{2.4} samples. X-ray experimental diagram (dots), calculated pattern (continuous line), difference (lower continuous line), and calculated Bragg position (vertical lines in middle).

range of 5–300 K. The sample exhibits no diamagnetic signal and hence possesses no bulk superconductivity. The magnetization measurement with varying field at a fixed temperature of 5 K is also done for the superconducting NbB_{2.4} sample and is shown in the upper inset. Thus, NbB_{2,4} is a type-II superconductor with the H_{c1} and H_{c2} values of 500 and 1600 Oe, respectively. In this way boron excess increases the c parameter and induces superconductivity in niobium boride sample. All boron excess samples are found to possess superconductivity with different T_c values.¹²

The main panel of Fig. 2(b) shows the ρ -T measurement for NbB_{2,4} sample, while the inset shows the same for NbB₂ sample. The NbB_{2.4} sample shows a sharp transition with a $T_{\rm c}$ onset of 7.5 K. On the other hand the stoichiometric NbB₂ sample just shows metallic behavior from 300 K to about T=80 K. After that resistivity becomes almost constant and shows no superconducting transition down to 5 K. Thus ρ -T measurement is in confirmation with the M-T measurement showing that only boron excess sample is superconducting, while the stochiometric NbB2 is a nonsuperconductor although $T_{\rm c}$ onset obtained from magnetization measurement for NbB_{2.4} is comparatively higher.

After inducing superconductivity in NbB_{2+x} , the same is tried for TaB_{2+x} sample. The magnetization versus temperature measurements (M-T) are shown in Fig. 3 for TaB_{2+x} samples in the temperature range of 5–20 K. The samples do not exhibit any diamagnetic signal confirming that there is no superconductivity below to 5 K. The magnetic moment increases with the decrease in temperature for all the samples. The inset shows the magnetic behavior of TaB_{2,4} and TaB_{2,6} samples with varying field at a fixed temperature of 5 K. The magnetic moment increases with the applied field and then saturates at a field of about 4 kOe and a hysteresis is obtained in decreasing direction of field. In this way, a paramagnetic type behavior is shown by both the samples. The magnetic moment of TaB_{2.6} sample is more than the TaB_{2.4} sample at a particular field value, which might be due to some magnetic impurity in the boron powder.

Now the point to be discussed is that if increase in c parameter induces superconductivity in NbB_{2+x}, why it does not happen in TaB_{2+x} case? Actually, if we see the values of c parameter in NbB_{2+x} case, it has increased from 3.264 Å for pure NbB₂ to 3.320 Å for NbB_{2.4} and saturates thereafter. For TaB₂, c parameter is 3.238 Å, which is less than that of pure NbB₂. With boron excess, c parameter increases in TaB_{2+r} case also but slightly, i.e., only up to 3.278 Å for $TaB_{2,2}$. After that, no increase in c parameter is noticed, which implies excess boron cannot be accommodated in the TaB₂ lattice after this limit. Excess boron actually creates metal vacancies in the system as discussed in many theoretical studies. ^{17,18} So, we come to the conclusion that although c parameter increases in TaB_{2+x} case, but it is not sufficient to create enough metal vacancies to introduce superconductivity in this system.

Figure 4 shows the variation in thermoelectric power (TEP) of MgB₂, AlB₂, NbB₂ samples with temperature. The Al⁺³/Nb⁺⁵ substitution at Mg²⁺ provides extra electrons and hence filling of the hole type sigma band and resulting electron type conductivity while MgB₂ is a hole type conductor. As mentioned before, the nonsuperconducting behavior of

TABLE I. Lattice parameters and c/a values for NbB_{2+x} and TaB_{2+x} samples with x=0.0, 0.2, 0.4, 0.6,and 0.8.

	TaB_{2+x}			NbB _{2+x}		
x	a(Å)	c(Å)	c/a	a(Å)	c(Å)	c/a
0.0	3.0899(1)	3.2378(2)	1.048	3.1103(1)	3.2640(2)	1.049
0.2	3.0739 (1)	3.2776(2)	1.066	3.1013(1)	3.3051(2)	1.066
0.4	3.0732 (1)	3.2762 (2)	1.066	3.1041(2)	3.3202(1)	1.069
0.6	3.0741(1)	3.2775(1)	1.066	3.1018(1)	3.3195 (1)	1.070
0.8	3.0746(1)	3.2771(2)	1.066	3.1040(2)	3.3172(2)	1.069

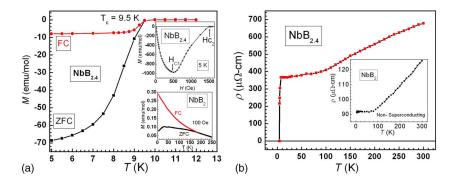


FIG. 2. (Color online) (a) The magnetization vs temperature (M-T) plot for superconducting NbB_{2.4}. The lower inset shows the same for NbB₂ while the upper inset shows the M-H plot for NbB_{2.4} sample. (b) Variation of resistivity with temperature for NbB_{2.4} sample. The inset shows the same for NbB₂.

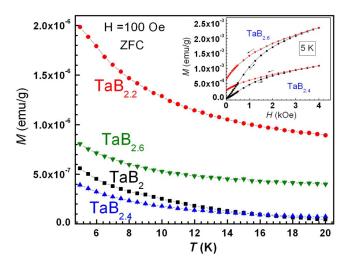


FIG. 3. (Color online) The M-T plot for TaB_{2+x} sample with x=0.0, 0.2, 0.4, and 0.6. The inset shows the M-H plot for $TaB_{2.4}$ and $TaB_{2.6}$ samples.

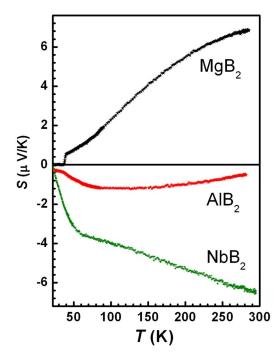


FIG. 4. (Color online) Thermoelectric power vs temperature plots for MgB_2 , AlB_2 , and NbB_2 samples.

NbB₂ and AlB₂ is seemingly due to two facts, i.e., changed carrier density and the *c* parameters. The detailed analysis of TEP data on the basis of two-band model is done earlier for MgB₂ and AlB₂.¹³ It is discussed theoretically that the presence of vacancies in the Niobium sublattice of NbB₂ brings about considerable changes in the density of states in the near Fermi region and hence affects the superconductivity.¹⁹

In summary, the c is stretched for nonstoichiometric NbB_{2+x} and TaB_{2+x} samples. Excess boron creates metal vacancy in the lattice and induces superconductivity in niobium boride case, but the increase in c parameter is not sufficient in TaB₂ case and hence the superconductivity is not achieved. The thermoelectric power measurement shows the different types of carriers in different borides.

¹J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) 410, 63 (2001).

²V. A. Gasprov, N. S. Sidorov, I. I. Zever'kova, and M. P. Kulakov, JETP Lett. **73**, 601 (2001).

L. Leyarovska and E. Leyarovski, J. Less-Common Met. 67, 249 (1979).
H. Rosner, W. E. Pickett, S. L. Drechsler, A. Handstein, G. Behr, G. Fuchs, K. Nankov, K. H. Muller, and H. Eshrig, Phys. Rev. B 64, 144516 (2001)

⁵A. Yamamoto, C. Takao, T. Matsui, M. Izumi, and S. Tajima, Physica C **383**, 197 (2002).

⁶D. Kaczorowski, A. J. Zaleski, O. J. Zogal, J. Klamut, e-print arXiv:cond-mat 0103571 (unpublished).

⁷L. Cooper et al., Proc. Natl. Acad. Sci. U.S.A. 67, 313 (1970).

8H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, H. Takagiwa, and J. Akimitsu, Physica C 378–381, 25 (2002).

J. E. Schirber, D. L. Overmeyer, B. Morosin, E. L. Venturini, R. Baughman, D. Emin, H. Klesnar, and T. Aselage, Phys. Rev. B 45, 10787 (1992).
X. Wan, J. Dong, H. Weng, and D. Y. Xing, Phys. Rev. B 65, 012502 (2001)

¹¹V. P. S. Awana, A. Vajpayee, M. Mudgel, V. Ganesan, A. M. Awasthi, G. L. Bhalla, and H. Kishan, Eur. Phys. J. B 62, 281 (2008).

¹²M. Mudgel, V. P. S. Awana, G. L. Bhalla, and H. Kishan, Solid State Commun. **147**, 439 (2008).

¹³M. Mudgel, V. P. S. Awana, R. Lal, H. Kishan, L. S. Sharth Chandra, V. Ganesan, A. V. Narlikar, and G. L. Bhalla, J. Phys.: Condens. Matter 20, 095205 (2008).

¹⁴I. Loa, K. Kunc, K. Syaseen, and P. Bouvier, Phys. Rev. B 66, 134101 (2002).

¹⁵R. Escamilla, O. Lovera, T. Akachi, A. Duran, R. Falconi, F. Morales, and R. Escudero, J. Phys.: Condens. Matter 16, 5979 (2004).

¹⁶H. Itoh, Y. Satoh, S. Kodama, and S. Naka, J. Ceram. Soc. Jpn. 98, 264 (1990)

¹⁷L. E. Muzzy, M. Avdeev, G. Lawes, M. K. Hass, H. W. Zandbergan, A. P. Ramirez, J. D. Jorgensen, and R. J. Cava, Physica C 382, 153 (2002).

¹⁸H. Klesnar, T. L. Aselage, B. Morosin, and G. H. Kwei, J. Alloys Compd. 241, 180 (1996).

¹⁹I. R. Shein, N. I. Medvedeva, and A. L. Ivanovskii, Phys. Solid State 45, 1617 (2003).