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ABSTRACT

The paper reports a preliminary study of the behavior of a high performance controlled
clearance piston gauge (CCPG) in the pressure range up to 1 GPa through finite elemental
analysis (FEA). The details of the experimental characterization of this CCPG has already
been published (Yadav et al.. 2007 [1]). We have already pointed out that the use of
Heydemann-Welch (HW) model for the characterization of any CCPG. has some limitation
due to the fact that the linear extrapolation of the cube root of the fall rate versus jacket
pressure (vl/3 _Pj) curve is assumed to be independent of the rheological properties of the
pressure transmitting fluids. The FEA technique addresses this problem through simulation
and optimization with a standard ANSYS program where the material properties of the pis
ton and cylinder. pressure dependent density and viscosity of the pressure transmitting
fluid etc. are to be used as the input parameters. Thus it provides characterization of a pres
sure balance in terms of effective area and distortion coefficient of the piston and cylinder.
The present paper describes the results obtained on systematic studies carried out on the
effect of gap profile between piston and cylinder of this controlled-clearance piston gauge,
under the influence of applied pressure (p) from 100 MPa to 1000 MPa, on the pressure dis
tortion coefficient U) of the assembly. The gap profile is also studied at different applied
jacket pressure (Pj) such that pjp varied from 0.3, 0.4 and 0.5.

1. Introduction

The accurate determination of pressure distortion coef
ficients (A) as a function of applied pressure (p), zero pres
sure effective area (Ao) of piston-cylinder assembly with
effective area (Ap ) measurement as Ap =Ao (1 + AP) and
the associated uncertainties for pressure balances operat
ing at approximately 50 MPa and higher pressures has
been carried out by many authors using various methods
in high pressure metrology [2-7]. A good agreement
has been reported in most of the studies between the the
oretical methods. However, discrepancies were observed
between the theoretical and the experimental results.
The differences were comparatively large in the theoretical

and experimental results in case of controlled-clearance
piston gauges.

A number of different techniques have been used in the
past for the characterization of controlled clearance type
piston gauges. Among all these methods, the Heyde
mann-Welch (HW) model, is widely accepted and used
by some of the national metrological laboratories [1,8
17] but has some limitation due to the fact that the linear
extrapolation of the cube root of the fall rate versus jacket
pressure (V

1
/
3_pj) curve is assumed to be independent of

the rheological properties (density and viscosity) of the
pressure transmitting fluids. The technique based on FEA
has been specifically tailored to model piston-cylinder
gap profile, pressure distortion, related pressure gradients
and flow of the operating fluid. Samman [18], Samman
and Abdullah [19], Sabuga [20], Molinar et at. [21], Buon
anno et al. [22,23] are the researchers who initiated to
use FEA as a tool to study the different designs of p-c



3. Modelling of piston-cylinder assembly for FEA
analysis

The structural problem of the p-c assembly was solved
both in FDM and CCM using ANSYS software version 9.0 fi
nite element program. A two dimensional model of the p-c
assembly is considered assuming p-c assembly as axially
symmetric as shown in Fig. 2. The x-y coordinates of all
the keypoints thus created are shown in Table 1.

The areas of the axially symmetric piston and cylinder
were formed from these keypoints. These areas were then
meshed with 2416 (eight nodes) quadrilateral elements

the help of NPLI Reference Standard Slip Gauge within the
measurement uncertainty of ±0.06 I-lm (k = 2), is 2.52283
mm. The inner and outer diameters of the cylinder mea
sured by Precision 3D Coordinate Measuring Machine
within the uncertainty limit ± (0.8 + L/900) I-lm (k = 2), are
2.5247 mm and 26.0223 mm, respectively. This corre
sponds to the initial clearance width h = 0.935 I-lm. In the
free deformation mode (FDM), these dimensions of the pis
ton and cylinder were taken into consideration for compu
tation using FEA. In the controlled clearance mode (CCM),
the jacket pressure (Pj) is applied such that pip varied from
0.3, 0.4 and 0.5 to the outer surface of the cylinder as
shown in the diagram. The piston is made of tungsten car
bide and cylinder is made of steel. The values of Young
moduli, Ep = 620.58 GPa, Ec = 206.84 GPa, Poisson ratio,
/lp = 0.218, /lc = 0.285, and thermal expansion coefficients,
IXp = 4.42 x 1O-6

/ o C, IXc = 10.5 x 1O-6
/ oC, reported by the

manufacturer are used in computation. The piston is in
floating position when it is located 3.4 mm above its rest
position in the cylinder. The total engagement length is
18.9 mm.

assemblies. The most recent studies carried out by Molinar
et al. [24,25] and Sabuga et al. [26,27] are the example to
prove that FEA is a sensitive and powerful tool for such
analysis and addresses amicably the problem faced in
HW model through simulation and optimization with a
standard ANSYS program where the material properties
of the piston and cylinder, pressure dependent density
and viscosity of the pressure transmitting fluid etc. are
used as the input parameters. Thus it provides character
ization of a pressure balance in terms of effective area
and distortion coefficient of the piston and cylinder.

The National Physical Laboratory of India (NPLI), New
Delhi used the HW model to establish and realize its na
tional practical pressure scale up to 5 MPa in pneumatic
pressure range [12]; 500 MPa [13-15] and most recently
extended up to 1 GPa [1] in hydraulic pressure range. The
present paper reports a preliminary study of the behavior
of a high performance controlled-clearance piston gauge
(CCPG) (nominal diameter of 2.5 mm) in the pressure
range up to 1 GPa through FEA. The initial findings of the
studies were reported elsewhere [28]. The systematic stud
ies thus carried out on the effect of applied pressure (p)
from 100 MPa to 1000 MPa on the gap profile between pis
ton and cylinder, pressure distortion coefficient (),) of the
assembly using FEA are reported. The gap profile is also
studied at different applied jacket pressure (Pj) such that
pip varied from 0.3, 0.4 and 0.5. The results thus obtained
using FEA are compared with the experimental values.

2. Description of the 1 CPa CCPC piston-cylinder
assembly

The details of the 1 GPa piston-cylinder assembly are
reported in our earlier paper [1]. It is a NPLI national pri
mary hydraulic pressure standard in the pressure range
100-1000 MPa. A schematic diagram of the assembly is
shown in Fig. 1. The diameter of the piston measured with 14
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Fig. 1. Schematic diagram of the piston-cylinder assembly.
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Fig. 2. Keypoints created for the modelling assuming p-c assembly as
axially symmetric in a two dimensional model.
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Table 1
x-y Coordinates of piston-cylinder keypoints.

Keypoints x(mm) y(mm)

Cylinder
1 1.26235 59.55
2 13.01115 59.55
3 13.01115 10.55
4 15 10.55
5 15 7.5
6 19.1 7.5
7 19.1 0
8 3.8 0
9 1.86235 4.60923

10 1.86235 40.65
11 1.26235 40.65

Piston
12 1.261415 59.55
13 1.261415 61.525
14 0 62.95
15 0 12.55
16 1.261415 13.975
17 1.261415 40.65

and 2768 nodes of smart size 4. There were total 254 nodes
created along the engagement length of 18.9 mm between
keypoints 12-17 of piston and 1-11 of cylinder. A uniform
pressure equal to measured pressure, p, was applied to the
lines 9-10, 10-11, 15-16 and 16-17. The movement of the
piston and cylinder were restricted by applying constraints
in y direction to the lines 1-2. and 13-14. In case of ((M.
additional load equal to jacket pressure. Pj. was applied
to the lines 2-3. The segment along the engagement
length was exposed to a linearly varied pressure values
obtained using hydrodynamic calculations. FEA calcula
tions were performed at the reference temperature of
20 O( and for the pressures 20 MPa. 100 MPa. 200 MPa,
300 MPa, 400 MPa. 500 MPa, 600 MPa, 700 MPa. 800 MPa,
900 MPa and 1 GPa.

The di(2-ethylhexyl) sebacate (also known as BIS com
mercially) is used as pressure transmitting fluid. The density
(P. kg{m3

) and dynamic viscosity (11, Pa s) ofBIS as a function
of pressure (P. MPa) (p is linearly variable pressure) at 20 O(

were calculated using the following equations derived by
Molinar [29] from the experimental data from [30] for
P ,,;; 500 MPa and [31] for P > 500 MPa ,,;; 1 GPa:

P (kgjm3 ) = 912.67 + 0.752p - 1.645 x 10-3
. p2

+ 1.456 X 10-6
. p3 (p ,,;; 500 MPa) (1)

p (kgjm3) = 915.61 + 0.505727p - 0.661573 x 10-3 . p2

+ 0.584283 x 10-6 . p3 - 0.204436 x 10-9

. p4 (p > 500 MPa ,,;; 1 GPa) (2)

11 (Pa s) = 0.021554 x (1 + 1.90036 x 10-3 . p)88101

(p ,,;; 500 MPa) (3)

11 (Pa s) = 459.968 - 4.93208· p + 0.0213348· p2

_ 4.8768 X 10-5 . p3 + 6.25155 X 10-8 . p4

_ 4.28033 X 10- 11
. p5 + 1.2575 X 10-14

.p6 (p> 500 MPa ,,;; 1 GPa) (4)

4. Theoretical aspects

The mechanical theory of elastic equilibrium allows
determination of the elastic distortion of the piston and
cylinder from the pressure distribution in the clearance.
Such distortions are obtained using the elastic equilibrium
conditions on the piston-cylinder assembly. Assuming the
hypothesis of constant clearance. one can use simplified
relationship to evaluate the pressure distortion coefficient.
as reported in [6]. In case of the gap profiles depend upon
the axial coordinates. the effective area, Ap , of a piston-cyl
inder assembly is determined as follows [2,6]:

[
h(O) 1 (I dpz ]

Ap = n~(O) 1 + rp(O) + (PI _ P2)rp[O) Jo [(U(z) + u(z)] dz dz

(5)

where rp(O) is the radius of undistorted piston at axial
coordinate, z = 0, h(O) is the initial gap width between
undistorted piston and cylinder, pz is the pressure distribu
tion in the clearance. U(z) and u(z) are the radial displace
ments of the cylinder and piston, respectively.

The method used for the computation of distortion
coefficient is identical as used in [27] which is based on
the solution of the structural and fluid flow problems
assuming the flow between piston and cylinder to be axial,
hydrostatic. one dimensional. Newtonian viscous, isother
mal and laminar. In such a case. the relationship between
pressure distribution in the clearance, gap profile, h(z)
and the rheological properties of the pressure transmitting
fluid is determined by the solution of the Navier-Strokes
equation and the equation of continuity as follows [6.18.
23,27]:

P -p+k (' I1(P) ._l_dz
z - Jo p(p) h3 (z)

where k is given by:

(7)

where 11(P) and p(p) are the dynamic viscosity and density
of the pressure transmitting fluid, respectively. Eqs. (6) and
(7) were integrated using Simpson's method to obtain their
solutions. Since 11(P), p(p) and k are function of the pres
sure distribution in the gap, pz is computed using iterative
approach. reported in the literature [23]. At the first itera
tion. a linear pressure profile is applied along the gap from
p to zero and, then, the corresponding k value is obtained
using (7). The obtained k value is then replaced in (6) to
gether with the fluid properties. leading to a new pressure
distribution pz to be applied for the next iteration. The
pressure distribution thus computed in the gap for a par
ticular applied pressure. p, is then curve fitted using Fou
rier Transformation in a separate software platform
named Origin 6.1 to minimize the integration errors. The
final values of the pressure distribution thus calculated
are then fed into the FEA program to calculate the elastic
distortions and the new gap profile.



where Ao is the zero pressure effective area and is com
puted using:

The meshed deformed structure of piston-cylinder
assembly used in eeM is shown in Fig. 3a for whole assem
bly. Fig. 3b shows the zoom portion of the engagement

The effective area, Ap is then computed form the values
of Rp , rp and pz using (5). The pressure distortion coefficient
is then computed as follows:

}, = {(Ap/Ao) -l}/p

[

r/ 1 d 1'r.-rp (o)]
2 1 Joj;2 Z 2 ~

Ao = nrp(O) 1 + r (0) '-/-1-+ r (0) '-/-1-
P fo hS dz p fo hS dz

5. Results and discussion

(8)

(9)

length at an applied pressure of 1.0 CPa in eeM at a
Pj = 0.5 of p. The normalized pressure distribution pz along
the normalized axial coordinate, z in the engagement
length of piston-cylinder, computed using (6) and (7) is
shown in Fig. 4. The dimensionless axial coordinate, z is de
fined as axial engagement length of the piston-cylinder
engagement length as z = 0 mm (initial length) to z =

18.9 mm (final length). The gap width affects the pressure
distribution and it is nearly linear near the bottom due to
the decrease in pressure gradient there. However, the lin
ear behavior changes approaching towards top and it be
comes near to parabolic shape for the applied pressures.
Fig. 4 shows that p(z) in the gap depends upon the mea
sured pressure, p and it shows, as usual, as nearly linear
(at lower p) to marked non-linearity that increases with
increase in measured pressure p.

For the computation of p(z), the pressure dependence of
density, p(p) and viscosity,1](p) ofsebacate oil was considered

Fig. 3. (a) Meshed deformed structure ofp-c assembly, (b) meshing around engagement length and (c) image of the distorted p-c assembly in CCM mode at
p ~ 1.0 GPa and Pj ~ 0.5 p.
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utilizing (1) and (3) for pressure up to ~500 MPa and (2) and
(4) for pressure> 500 MPa and up to 1000 MPa, respec
tively. In order to obtain optimum results when changing
(3) to (4) for viscosity, we have plotted the calculated values
of 1]( p) as a function of P in Fig. 5.

It is clear from the curves that the values of 1](p) are
almost superimposed at 400 MPa. Therefore, the use of
(3) would give optimum results for pressure ~ 500 MPa
and (4) for pressure> 500 MPa. It is also clear that any of
these two equations can be used for entire pressure range
100-1000 MPa. Even after taking care of this aspect while
changing the equations, there is still different patterns of
curves obtained for pressures <I> 500 MPa which is proba
bly due to the fact that p(z) is not much affected by 1](p) for
pressure less than 500 MPa.

As mentioned earlier, the gap profile of the piston-cyl
inder assembly is studied at different varied jacket pres
sure such that pi P = 0 in FDM and pi P = 0.3, 0.4 and 0.5
in eeM. The results thus obtained on the gap profile of
the piston and cylinder generatrix surfaces as a function
of normalized engagement length for different applied
pressure, P from 100 MPa to 1000 MPa are shown in
Fig. 6a-d. The decrease at the top and increase approaching
towards bottom in the gap width is clearly visible as the
applied pressure, P increases, especially in FDM (Fig. 6a).
In FDM, the initial gap of 0.935 llm at P = 0 deceases to
0.5 llm at top and increases to 9.5 llm at bottom at
P = 1000 MPa. However, in eeM, the gap width is found
always increasing form top (I = 18.9 mm) to bottom (I = 0)
for all the pressures which is obvious due to the pressure
distribution in the gap profile which is equal to atmo
spheric pressure at top and increases equal to the applied
pressure at the bottom.

We have already reported in our previous paper [1] that
the piston fall rate for low jacket pressure (Pi"-
o (1 P to 0.2 ljJ p) is so fast that it cannot be measured with
the same reproducibility as has been done with the other
points from (Pi" -- 0 (3 ljJ P to 0.64ljJ pl. The reason for
fast fall rate is quite evident from the measurement of
gap width along the engagement length using FEA. Due
to the quite high gap width in FDM and also at lower jacket
pressures (Pi" -- 0 (1 ljJp to 0.2ljJp), the floating time of
the piston is very low (few seconds) and it is not possible
with this eePG design to measure fall rate/pressure with-

out applying jacket pressure. As expected, the clearance
between piston and cylinder decreases as Pi increases.

A small bump is seen in all the curves at 1= 5.3 mm as is
evident from Fig. 6. This bump may be due to the geomet
rical shape of the assembly and the resultant strains which
are also visible in the image of distorted p-c assembly ob
tained from FEM (Fig. 3c). Also, a small convex curvature is
seen in all the curves of Fig. 6 at the beginning part of the
engagement length. This may be understood due to the fact
that the gap width decreases at the beginning part in com
parison to its top part of the engagement length. From this
point downwards the cylinder bore diameter is much higher
in comparison to along the engagement length. Due to this
geometrical edge (Fig. 3b) at the beginning part of the
engagement length, the point pressure is applied form all
the directions which creates comparatively higher defor
mation in the cylinder at the beginning part in comparison
to the top. In order to study the effect ofPi on gap width, the
difference of gap width between FDM and eeM as a func
tion of applied Pj along the engagement length is plotted
in Fig. 7. Interestingly, the difference in gap width is almost
uniform along the engagement length for all the applied
jacket pressures, i.e. Pj = 0.3 p, 0.4 P and 0.5 p.

It is clearly evident form Fig. 6 that jacket pressure, Pj
affects not only the distortion of cylinder but also of the
piston. However, the piston is less sensitive to Pi in com
parison to cylinder. The piston distortion is much higher
at the top in comparison to bottom. This phenomenon
can easily be understood with the fact that the difference
in pressure distributions in the clearance for FDM and
eeM is higher at the bottom and lower at the top.

The radii of piston and cylinder plotted as a function of
normalized engagement length for both FDM and eeM are
shown in Fig. 8 for applied pressure of 100 MPa and
1000 MPa.

Fig. 9 shows the effective area (Ap ) at 20 °e plotted as a
function ofjacket pressure, Pj at different nominal pressures
p. Linearity ofthe plots clearly suggests the close agreement
between the values of Ao computed in FDM and the values
obtained form the interpolation of curves PrAp in eeM. Pr
Ap curves are also used to determine the values of jacketed
distortion coefficient, d of the cylinder using the relation:
d = {(Mp/~Pi)/Ap}. The average value of d is found to be
3.6 x 10-6 MPa- 1 with measurement uncertainty 3.3 x
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10-7 MPa- 1• The d value varies 1.8-5,4 x 10-6 MPa- 1• The
theoretical 'd' value is also estimated from dimensional
measurements of piston-cylinder assembly using the rela
tionship suggested by Newhall et al. [16] as follows:

where Ep, j1p and Ee• j1p are the Young's Modulus and Pois
son ratios of piston and cylinder materials, respectively.

m is defined by:

(1 - fle) + (1 + fle)W2 (1 - 3flp)(W2 -1) Ee
m = 2w2 + 4w2 . E

p
(11)

where w is the ratio of the outer to inner diameter of the
cylinder and the constant k is estimated using:

1 [(w2 + 1) ]
k=2 (W2 _1)+fle (12)

The value of 'd' thus calculated as 5.084 x 10-6 MPa- 1
,

is quite comparable to the values calculated through
FEM, analysis. The average d value determined experimen-

d= _1 [k _ (3 flp - 1) x Ee]
m· Ee 2 Ep

(10)

tally up to 500 MPa is 6.7 x 10-6 MPa-1 which varies 3.2
9.8 x 10-6 MPa- 1

. Admittedly, there is some inconsistency
in the experimental and FEM d values which would be fur
ther studied in our future endeavors.

The effective area (Ap ) is also plotted as a function of
applied pressures p in FDM at Pj = 0 and in CMM at
Pj = 0.3 p, 0,4 P and 0.5 P (Fig. 10). The effective area de
ceases with increase in Pj and becomes almost uniform
at Pj = 0.5 p.

The values of pressure distortion coefficients calculated
using (8) from the values ofAp obtained through FEA at dif
ferent pressures with varying pip as 0 in FDM and 0.3, 0,4
and 0.5 in CCM are shown in Fig. 11. Generally, the pressure
distortion coefficient, }, is independent of applied pressure.
As expected, the values of }, are much higher in FDM in
comparison to CCM. In FDM, the }, varies from minimum
3.08 x 10-6 MPa-1 to maximum 3,4 x 10-6 MPa-1 having
average value as 3.28 x 10-6 MPa-1with measurement
uncertainty 0.031 x 10-6 MPa- 1

. The}, is found to decrease
with increase in Pj. Similarly, the average values of the
}, in CCM are found be 1.06 x 10-6 MPa-1 ± 0.005 x
10-6 MPa- 1, 0.68 x 10-6 MPa- 1 ±0.22 x 10-6 MPa- 1and
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Fig. 11. Distortion coefficient, ), determined as a function of applied pressures p with pjp varying as 0 in FDM and 0.3, 0.4 and 0.5 in CCM.

0.43 x 10-6 MPa-1 ±0.046 x 10-6 MPa-1 with pip varying
as 0.3, 0.4 and 0.5, respectively.

6. Conclusions

The following conclusions are drawn from the studies:

• A numerical methodology based on the FEA has been
used to study the gap profile, pressure distribution in
the clearance, pressure distortion coefficient, and effec
tive area of a controlled-clearance piston gauge both in
the free deformation and controlled clearance modes,

• The gap width increases with increase in the applied
pressure p both in FDM and CCM. At 1.0 CPa, the initial
gap of approximately 0.953!lm at p = 0 increases to
9.5 !lm. The radial clearance gap is always higher than
the undistorted value. The change in gap width also
increases along the engagement length from top to bot
tom due to the increase in pressure distribution in the
gap profile.

• The jacket pressure, Pj affects not only the distortion of
cylinder but also of the piston. However, the piston is less
sensitive to Pj in comparison to cylinder. The piston dis
tortion is much larger at the outlet in comparison to inlet.
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