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Abstract

Spherical shaped gold nanoparticles (GNPs) of size around ~9 nm were successfully used for
photocatalytic degradation of hazardous endosulfan (ES) pesticide. GNPs absorb sunlight at ambient
condition in aqueous medium to enhance localized surface plasmon resonance (LSPR) which initiate
hydrolysis, oxidation and reduction chemical reactions for the mineralization of ES molecules.
Infrared transmittance spectra of GNPs treated ES solutions revealed formation of amorphous carbon
and hydrocarbon as final reaction products indicating the nearly complete mineralization of ES as
evidenced from their TEM images also. The disappearance of chloro carbon and sulphite functional
groups peaks of ES in IR transmittance spectra confirmed their degradation. TEM images also support
the optical absorption spectra consisting of inter-band and LSPR bands pertaining to individual and
clustered GNPs ensembles. The redshift in LSPR absorption peak positions along minor and major
axis of clustered GNPs ensembles is attributed to the change in GNPs polarizability on interaction
with the electric component of visible light. The chemical reaction pathway for ES molecule
degradation by the photocatalytic GNPs has been proposed in the light of inferences drawn from TEM
images, IR transmittance and optical absorption spectra.

Introduction

Photocatalysts as clean and green sources play a vital role in meeting the demand of pollution free environment
by the decontamination of life saving natural resources like soil, water, air and also in energy related applications.
Extensive research is going on the development of new economically efficient and advanced photocatalytic
materials suitable for maximum energy absorption from visible region of solar spectrum [1-10]. Studies were
reported on both homogeneous and heterogeneous photocatalytic materials for the oxidation reactions.
Hydrogen peroxide (H,0,), ozone (O3), Fenton reagent, sodium hypochlorite (NaOCl) are categorized under
homogeneous photocatalytic materials [1] and used either individually or in combination with light to undergo
oxidation reaction for the degradation of pollutants. Semiconducting II-VI metal oxides/sulphides e.g. TiO,
[2], ZnO [3], ZnS [4]; CdS [4], WO5 [5], Bi,O5 [6], Bi;S;5 [7], SnO; [8], MnO, [9] and Au/Ag/Cu metal
nanoparticles supported on different metal oxides [10] etc are characterized under the heterogeneous
photocatalysts. They utilizes UV and/or visible solar radiation to generate variety of reactive oxygen species for
photocatalytic oxidation. These metal oxides/sulphides exhibit best efficiencies under UV-light irradiation
because of their wide energy band gap. In addition to these photocatalysts, work on new nanocomposite
materials suitable for visible region absorption is also reported [11-15]. Some of those are Bi/BiVO,,
g-C3N4/SmVO, [11], Srg 25Big 7501 36 [12], CeO,/SnO, /rGO [13], AgsPO, [14] and Fep(MoO,); [15].
However, these composites have disadvantages such as limited visible-light absorption, swift charge
recombination and poor stabilities which restricts their usage in different applications. Recently, the study of
optical and catalytic properties of GNPs as photocatalyst has attracted researchers owing to its capability of
simultaneously absorbing visible and ultraviolet light from solar spectrum. The LSPR signal of noble metals of

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Schematic of GNPs synthesis by citrate route.

size more than 5 nm absorbs light in the visible region [ 16—20] and also acts as an electron trap for photoinduced
electrons [21]. The intensity of plasmonic band is sensitive to the morphology, dielectric constant of dispersing
medium and electronic interactions involved in stabilizing ligands and nanoparticles [19]. In nobel metals,
photocatalytic reaction, light absorption and activation of reactants take place simultaneously which enhances
their light harvesting and thermal energy absorption capacity i.e. photocatalytic quantum efficiency to initiate
chemical reactions [20]. In GNPs, LSPR effect couples with sunlight to generate high energy conduction
electrons at the surface of the nanoparticle to initiate chemical reaction with molecules adsorbed on their surface
[19,20,22-27]. The excited electrons and enhanced electric field of GNPs convert solar energy into chemical
energy by the photon-driven photocatalytic reaction. It implies that during photocatalysis, light harvesting from
sunlight and chemical reaction with adsorbed species/molecules on noble metal NPs surface is going on side-
by-side. The strong visible light absorption, recyclability and large surface area to volume ratio of GNPs have
proved them to be a suitable candidate for photocatalytic reaction. Current investigation aims to exploit the
photocatalytic activity of GNPs for mineralization of hazardous organochlorine pesticide ES. Long
environmental life span and deadly health effects of ES and its metabolites have encouraged the researchers for
pursuing easy and economic detoxification pathways from the environment. Different bulk and nanomaterials
have been used for their mineralization via hydrolysis, oxidation and reduction reactions e.g. carbon based
nanomaterials, semiconducting oxides, magnetic oxides and nobel metals nanoparticles [22-25, 28, 29]. In the
present work, different concentrations of ES are treated with GNPs solution. The final reaction products were
examined by TEM, UV-Vis and FTIR techniques to confirm the mineralization of ES molecules. The
mechanism of ES degradation is discussed in the light of photocatalytic activity of GNPs.

Experimental

Synthesis of GNPs

The colloidal solution of GNPs were synthesized by the reduction of Tetra-Chloro Auric Acid (TCAA) (CDH
Make, AR grade) via Turkevich method [30]. The details of synthesis process have already been described in P.
Goel and M. Arora [26]. 150 ml of 0.5 mM TCAA (2% w/v) and 15 ml of 38.8 mM sodium citrate (3% w/v)
solutions were prepared in double distilled water in separate volumetric flasks. The magnetically stirred TCAA
solution was heated at 180 °C on hot plate then 15 ml sodium citrate solution was swiftly transferred to it.
Resulting solution after 5 min turned slightly bluish and by the end of the reduction process i.e. within 20 min,
colloidal gold nanoparticle solution of brilliant wine red color was obtained. The schematic of the synthesis
procedure is shown in figure 1.

To explore the degradation of organochlorine ES via photocatalytic GNPs, different concentration of ES
solutions ranging from 1 ppm to 50 ppm (i.e. 1, 5, 10, 20, 50 ppm) were prepared in 2-Propanol (HPLC and
Spectroscopy grade, CDH Make) by dissolving technical grade endosulfan flakes. Successively, 5 ml of each from
1 ppm to 50 ppm ES solutions were reacted with 0.5 ml GNPs suspension. The morphological details of as
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Figure 2. TEM of GNPs at 200 k Magnification.

Figure 3. (a) TEM images of 100 ppm ES: GNPs sample at 2 um scale showing rods as well as floral petal structures (b) Zoomed in
version of ‘a’at 200 nm scale exhibiting agglomeration of GNPs in rod shape and amorphous carbon particles (c) agglomeration of
GNPs as bigger ensembles.

prepared GNPs and GNPs treated ES solution reaction product are inferred from Transmission Electron
Microscopy (TEM) images of dried filtrate scanned on JEOL-TEM (1011) microscope. The optical absorption
spectra of pure and treated samples were recorded in 200-1000 nm range by using Shimadzu make UV—-Vis
spectrophotometer (Model: UV-2401 PV). IR transmittance spectra of ES, GNPs and final treated solutions
were recorded in 4000500 cm ™' region on M/S Bruker make, ALPHA T model FTIR spectrophotometer at
ambient temperature.

Results and discussion

TEM analysis
Figures 2 and 3(a)—(c) present TEM images of as synthesized GNPs and 100 ppm ES solution after reaction with
GNPs respectively. The pure GNPs exhibit uniform distribution of spherical shaped nanoparticles with very
narrow size distribution in ~8.50 £ 0.50 nm range. In ES:GNPs sample the images were recorded at different
locations under different magnifications. In figure 3(a) the image indicates the formation of long rods (of length
in the range of ~1.5 to 3.5 um) as well as flower petal structure which are randomly distributed. It can also be
seen that these rods have grey color patches around them which seem to comprise of ultrafine particles. A
‘zoomed in’ version of figure 3(a) is shown in figure 3(b) at 200 nm scale which exhibits agglomeration of GNPs
in rod shape and ultra fine amorphous carbon particles all over the place.

In figure 3(c), the agglomeration of GNPs in rod, floral petal and feather shaped structures with ultrafine
particles are clearly visible in 200 nm scale. These agglomerated structures encourage localized surface plasmon
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Figure 4. (a) UV-Vis spectra of GNPs suspension. (b) UV-Vis spectra of ES.

resonance in visible region and photocatalytically produced hot electrons and holes initiate hydrolysis, oxidation
and reduction chemical reaction for the degradation of ES pesticide into non-hazardous products [19, 20, 27].

UV-Vis spectroscopy studies

Optical absorption spectrum of as-prepared GNPs of ~9 nm size derived by citrate route of ruby red wine colour
solution (figure 4(a)) exhibit absorption peaks in UV and visible region at 324 nm and 529 nm due to the inter-
band electrons transition from 5d (valence) to 6sp (conduction) levels whereas the strong absorption at 529 nm
in as prepared GNPs is due to the LSPR transitions arising from 6sp electrons transition to conduction band

[16, 18, 31]. LSPR peak appears due to the absorption of visible light because in small nanoparticles momentum
conservation is not required. This fact is further supported by TEM image of GNPs in which uniform dispersion
of spherical shaped nanoparticles without any agglomeration is clearly visible. Absorption Spectra of ES with
absorption peaks at ~242 and 290 nm is shown in figure 4(b). In figure 5, the absorption spectra of 0.5 ml GNPs
solution treated ES (5 m.L. of each 01 ppm—50 ppm ES) are presented and positions of different peaks obtained in
the spectra are listed in table 1. The interband and LSPR transition peaks are observed in 350-360 nm and
530-545 nm regions respectively. While the strong and weak peaks observed in 655-695 nm and 985-995 nm
pertain to SPR transitions of minor and major axis of ellipsoidal shaped structures of aggregated GNPs
ensembles respectively. The redshift in LSPR peak positions as compared to pure GNPs is due to change in GNPs
polarizability on interaction with the electric component of visible light and hence confirm the aggregation of
small and big sized GNPs clusters. The changes in these peaks intensity reveal the decrease in the availability of
active sites i.e. lesser number of individual spherical shaped GNPs in the final reacted solution due to aggregation
of GNPs. TEM images of these solutions support these results and exhibit different cylindrical /rod, floral petals
and feather shaped structures of GNPs aggregates. The small aggregates are an assembly of three/four GNPs and
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Figure 5. UV-Vis spectra of GNPs treated ES solutions in 1 ppm—50 ppm range.

Table 1. Absorption Peak positions of 0.5 ml GNPs solution treated ES (5 ml of each 01 ppm—50 ppm ES).

Peak position (nm)

Sample 1st peak 2nd peak 3rd peak 4th peak
01 ppm 5 mlES: 0.5 ml GNPs 350 542 657 986
05 ppm 5 ml ES: 0.5 ml GNPs 354 536 681 984
10 ppm 5 ml ES: 0.5 ml GNPs 356 534 684 985
20 ppm 5 mlES: 0.5 ml GNPs 356 532 689 974
50 ppm 5 ml ES: 0.5 ml GNPs 358 530 693 994

bigger ensembles have a large number of GNPs which are arranged in cylindrical /rod, floral petals and feather
shaped structures. The systematic variation in solution colour change is observed i.e. from wine red to pink to
violet to purple and finally to light blue as the reaction proceeds between GNPs and different concentration ES
solutions. The colour gradient with ES concentrations is clearly apparent with naked eyes [26].

FTIR spectroscopy

The non-destructive infrared spectroscopy has been widely used for the analysis of structure by tentatively
assigning observed peaks pertaining to different bonding groups present in materials [32—-40]. In this work,
GNPs, endosulfan (ES) and GNPs treated ES solutions in varied concentrations were characterized by IR
transmittance spectra recorded in 4000-500 cm ! region at ambient temperature. This inferred information has
been used for proposing the reaction mechanism for the degradation of ES by photocatalytic GNPs. Technical
grade ES used in the present investigations, is a mixture of 70% alpha and 30% beta isomers having chemical
structures as presented below in figure 6.

ES has cyclohexadiene as skeletal ring on which out of 6 chlorine, 4 (labelled as 2a, 2b, 3a and 3b) are bonded
in-plane at 6, 7, 8, 9 position of cyclohexadiene ring and the remaining 2 Cl (1a, 1b) at 10 position above ring
structure, 6 H are presentat 1, 5, 5a, 6, 9, 9a positions, methano group at 6, 9 position and 2,4,3-benzodi-
oxathiepin-3-oxide of sulphite (SO3) group is bonded either below or above the hexa-chloro-
cyclohexadiene ring.

IR transmittance spectra of pure ES and GNPs exhibit characteristic vibrational peaks pertaining to adsorbed
moisture and different functional groups present as discussed in our earlier work [26]. IR transmittance spectra
of GNPs reacted with 1 ppm, 5 ppm, 10 ppm, 20 ppm and 50 ppm ES concentration solutions recorded in
4000-500 cm ™' region are presented in figure 7. The variations in peak positions and intensity of different
functional groups are discussed in detail in the forthcoming sections:

C-H stretching region
v C-H stretching vibrations of hydrocarbon and hydrogenated amorphous carbon appear in 3000-2800 cm ™
region. In ES, the asymmetric (v,,) and symmetric () stretching modes of -CHj group are obtained at 2971 and
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(b) (©)

Figure 6. Chemical Structure of (a) Endosulfan (b) a-Endosulfan and (c) $-Endosulfan.

2886 cm ™~ respectively and v, CH, stretching vibration at 2933 cm ™. The ~CH, stretching modes are stronger
than —CHj stretching modes. However, in ES/GNPs samples, reverse trend is observed, i.e. —CHj stretching
mode intensity is weaker than —CHj stretching modes. This suggests the conformational sensitivity of -CH,
groups with some of them in gauche configuration [41]. This indicates the formation of amorphous phase in the
ES:GNPs solution as seen in the TEM micrographs also.

CHj; bending region

In ES, medium intensity § (CH,) peak is observed in 1500—1450 cm ™ region as broad band with three
components at 1482, 1464 and 1452 cm ! which shows the weak side-by-side interaction between chains to ease
charge transfer and chain motion in ES solution [42—44]. The component at 1482 cm ™ ' arises from C—C skeletal
vibrations of transconformational chains. While, 1464 cm ' and 1452 cm components are tentatively
assigned as of CH; bending asymmetry mode of partially ordered chain structure and combination mode of
gauche defects with asymmetric deformation of the terminal CH; group of ES molecules [45—47] respectively. In
GNPs treated solutions, this peak appears at 1468 cm ™' with loss in intensity due to ES degradation and
aggregation of GNPs into different size ensembles. These results are supported by TEM images showing small
clusters, chain and petal or floral shaped GNPs ensembles and visible change in solution colour initially from
wine red to finally light sky blue.

CH, wagging region

The characteristic CH, wagging modes of gauche conformation [34] is obtained as medium intensity band at
1373 cm™ ' in ES and as doublet band with maxima at 1379 and 1364 cm ™' in GNPs:ES solution. It means
methyl groups exist in gem- or iso- dimethyl form in ES degraded final hydrocarbon product. The band
observed at 1364 cm ™' corresponds to gauche conformation with methyl groups in gem-form. While the
1379 cm ™' peak component arises from —CH3 iso- form umbrella mode. The medium intensity for this mode
confirms both crystalline and amorphous phases in ES-GNP solution.

—SOj3 Vibrational modes

A-component and E- component of v —SO3 asymmetric (¥,5ym) and symmetric (vsym,) stretching modes of -SO;
functional group are observed in the ES spectrum at 1269 and 1245 cm ™' respectively. The intensity of

1269 cm ™" band is more than 1245 cm™ ', due to strong in-plane hydrogen bond interaction between sulphite
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Figure 7. (a) IR transmittance spectra of x ppm ES (5 ml) (x = 1, 5, 10, 20, 50 ppm) solutions treated with 0.5 ml GNPs in
4000-500 cm ™! region with Zoomed-in views of (b) 1275-1100 cm ™', (c) 850-800 cm ' and (d) 800-580 cm ' regions.
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oxygen and propanol —OH functional group hydrogen atom as compared to their lateral interactions between
ES molecules. v—SO, asymmetrical stretching mode is obtained as strong peak at 1095 cm ™' along with medium
intensity peak at 1072 cm ™' and very weak intensity component at 1043 cm™'. The symmetrical stretching
modes of —SO, group appear as strong bands at 1006 and 981 cm ™' [41]. While its bending modes are observed
as medium intensity peaks at 538 and 508 cm ™' in ES. These peaks disappear in GNPs treated ES solutions IR

transmittance spectra which confirms the degradation of ES sulphite group with GNPs treatment.
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C-H bending, CHj; rocking and C—H wagging vibrations

The very strong broad transmittance peak in 1225-1100 cm ™' region with components at (1193, 1145) cm ™~
and (1180, 1168) cm ™' pertains to C—H bend. and CH; rock modes respectively in ES IR transmittance
spectrum. While in GNPs treated ES solutions, three peak components are observed at 1162, 1128 and

1106 cm ', as shown in figure 7(b) (Zoomed-in view of 12751100 cm ™' region). C—Hyyage- mode appears as
shoulder band with component and medium intensity peak at (840 and 814) cm ™' and 816 cm ™' respectively in
IR transmittance spectra of ES and GNPs treated ES solutions (figure 7(c)).

1

C_Cstretch.> C_Ostretch. and O_Cstretch. vibrations

VC—Coyrerch, modes are observed as shoulder bands at 966 and 940 cm ™' in ES and as a very strong peak at

950 cm ™' in GNPs treated ES solutions IR spectra. ¥C—Orech and #0—Cgreech. modes are obtained as medium
intensity peaks at 917, 880, 858 cm ™' in ES and in GNPs treated ES final solutions, these peaks disappeared. This
confirms the degradation of oxygen bonded carbon functional groups in ES molecule.

C—Cl stretching vibrations
In ES, six C-Cl bonds are present in three different environments labelled as 1a, 1b, 2a, 2b, 3a and 3b. »C—Cl
stretching modes of these —C(Cl), and CI-C=C-Cl groups are obtained at (793, 783), 754, 700, 673, (637, 622,
600), 582 cm ™' in pure ES IR spectra figure 7(d) (in zoomed view of 800-580 cm ' region). These peak
disappear in GNPs treated ES solutions due to photocatalytic reductive dechlorination reaction in which all the
chlorine bonded groups degrade simultaneously.

IR spectroscopic studies revealed the complete degradation of ES on treatment with GNPs as evidenced from
the disappearance of carbonyl, —SO; and C—Cl functional groups vibrational peaks observed in
1275-1150 cm ™}, 850800 cm ™' and 800-580 cm ™' regions respectively.

Proposed mechanism

The use of noble metal nanoparticles (NPs) as a photocatalyst has many advantages like high optical absorption
in the visible region of solar spectrum, no band gap and the availability of large number of high energy electrons
at their surface to initiate chemical reaction with adsorbed molecules [19, 20, 22, 48-55]. In GNPs, most of the
conduction electrons (6sp states) are present at the surface of NPs and very small number of them are distributed
above Fermilevels. Atambient condition, GNPs absorb both visible and UV components from normal sunlight
simultaneously due to LSPR and inter-band transitions between 5d and 6sp states. The conduction electrons
gain the energy of light irradiation and distribute large number of conduction electrons to high energy levels.
The availability of such high energy electrons (hot electrons) at the surface of GNPs are suitable for the
degradation of ES molecules adsorbed on their surface by the oxidation, reduction and hydrolysis chemical
reactions. The schematic of the proposed mechanism is shown in the following figure 8.

In the present investigations, the degradation of commercial grade ES solutions in varied concentrations
using GNPs is discussed in the light of phototcatalytic activity of GNPs. Based on the earlier reported ES
degradation pathways, we exploited the probable photochemical process in the current studies. ES sulphite
functional group hydrolyses to form less toxic endosulfan diol [16] which oxidises to endosulfan ether to
endosulfan hydroxyl carboxylic acid/endosulfan lactone and endosulfan hydroxyether. The intermediate
reaction products finally mineralize to sulphur dioxide and carbon dioxide. The mineralization of carcinogenic
ES chlorinated skeleton ring takes place by reductive dechlorination reaction [56—60]. Very fast reductive
reaction removes all six chlorine atoms labelled as 1a/1b, 2a/2b, 3a/3b simultaneously as Cl, gas. The proposed
mechanism is supported by TEM, UV-Vis and FTIR studies. The mineralization chemical reaction pathway is
also given below (figure 9).

Conclusion

The results presented in this study provide definitive evidence for the mineralization of ES pesticide by
photocatalytic GNPs. TEM, optical absorption and FTIR analytical techniques were used to confirm the nearly
complete degradation of ES pesticide. Based upon the results derived from morphological, optical absorption
and IR transmittance spectra of GNPs colloidal solution treated ES (1, 5, 10, 20 and 50 ppm) solutions, ES
degradation via intermediate hydrolysis, oxidation and reduction reaction mechanism has been proposed. The
agglomeration of GNPs into small and big ensembles bring visible change in colloidal solution coloration. TEM
images confirm the agglomeration of GNPs into different patterns whose size varies from few micrometer to
millimetre. Optical absorption spectra of GNPs treated ES solutions show peaks pertaining to the inter-band,
LSPR of individual and clustered GNPs in UV and visible regions with the variation in peaks intensity. IR
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transmittance spectra also reveal the nearly complete disintegration of ES pesticide by the formation of
amorphous carbon and hydrocarbons as final reaction products. Hence, novel GNPs are found to be a suitable
and efficient photocatalyst for providing an easy and swift way to eradicate highly persistent toxic ES pesticide
from the environment with a zero waste.
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