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Abstract
Spherical shaped gold nanoparticles (GNPs) of size around∼9 nmwere successfully used for
photocatalytic degradation of hazardous endosulfan (ES) pesticide. GNPs absorb sunlight at ambient
condition in aqueousmedium to enhance localized surface plasmon resonance (LSPR)which initiate
hydrolysis, oxidation and reduction chemical reactions for themineralization of ESmolecules.
Infrared transmittance spectra of GNPs treated ES solutions revealed formation of amorphous carbon
and hydrocarbon asfinal reaction products indicating the nearly completemineralization of ES as
evidenced from their TEM images also. The disappearance of chloro carbon and sulphite functional
groups peaks of ES in IR transmittance spectra confirmed their degradation. TEM images also support
the optical absorption spectra consisting of inter-band and LSPR bands pertaining to individual and
clusteredGNPs ensembles. The redshift in LSPR absorption peak positions alongminor andmajor
axis of clusteredGNPs ensembles is attributed to the change inGNPs polarizability on interaction
with the electric component of visible light. The chemical reaction pathway for ESmolecule
degradation by the photocatalytic GNPs has been proposed in the light of inferences drawn fromTEM
images, IR transmittance and optical absorption spectra.

Introduction

Photocatalysts as clean and green sources play a vital role inmeeting the demand of pollution free environment
by the decontamination of life saving natural resources like soil, water, air and also in energy related applications.
Extensive research is going on the development of new economically efficient and advanced photocatalytic
materials suitable formaximum energy absorption from visible region of solar spectrum [1–10]. Studies were
reported on both homogeneous and heterogeneous photocatalyticmaterials for the oxidation reactions.
Hydrogen peroxide (H2O2), ozone (O3), Fenton reagent, sodiumhypochlorite (NaOCl) are categorized under
homogeneous photocatalyticmaterials [1] and used either individually or in combinationwith light to undergo
oxidation reaction for the degradation of pollutants. Semiconducting II–VImetal oxides/sulphides e.g. TiO2

[2], ZnO [3], ZnS [4]; CdS [4],WO3 [5], Bi2O3 [6], Bi2S3 [7], SnO2 [8],MnO2 [9] andAu/Ag/Cumetal
nanoparticles supported on differentmetal oxides [10] etc are characterized under the heterogeneous
photocatalysts. They utilizes UV and/or visible solar radiation to generate variety of reactive oxygen species for
photocatalytic oxidation. Thesemetal oxides/sulphides exhibit best efficiencies underUV-light irradiation
because of their wide energy band gap. In addition to these photocatalysts, work on newnanocomposite
materials suitable for visible region absorption is also reported [11–15]. Some of those are Bi/BiVO4,
g-C3N4/SmVO4 [11], Sr0.25Bi0.75O1.36 [12], CeO2/SnO2/rGO [13], Ag3PO4 [14] and Fe2(MoO4)3 [15].
However, these composites have disadvantages such as limited visible-light absorption, swift charge
recombination and poor stabilities which restricts their usage in different applications. Recently, the study of
optical and catalytic properties of GNPs as photocatalyst has attracted researchers owing to its capability of
simultaneously absorbing visible and ultraviolet light from solar spectrum. The LSPR signal of noblemetals of
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sizemore than 5 nmabsorbs light in the visible region [16–20] and also acts as an electron trap for photoinduced
electrons [21]. The intensity of plasmonic band is sensitive to themorphology, dielectric constant of dispersing
medium and electronic interactions involved in stabilizing ligands and nanoparticles [19]. In nobelmetals,
photocatalytic reaction, light absorption and activation of reactants take place simultaneously which enhances
their light harvesting and thermal energy absorption capacity i.e. photocatalytic quantum efficiency to initiate
chemical reactions [20]. InGNPs, LSPR effect couples with sunlight to generate high energy conduction
electrons at the surface of the nanoparticle to initiate chemical reactionwithmolecules adsorbed on their surface
[19, 20, 22–27]. The excited electrons and enhanced electric field ofGNPs convert solar energy into chemical
energy by the photon-driven photocatalytic reaction. It implies that during photocatalysis, light harvesting from
sunlight and chemical reactionwith adsorbed species/molecules on noblemetal NPs surface is going on side-
by-side. The strong visible light absorption, recyclability and large surface area to volume ratio ofGNPs have
proved them to be a suitable candidate for photocatalytic reaction. Current investigation aims to exploit the
photocatalytic activity of GNPs formineralization of hazardous organochlorine pesticide ES. Long
environmental life span and deadly health effects of ES and itsmetabolites have encouraged the researchers for
pursuing easy and economic detoxification pathways from the environment. Different bulk and nanomaterials
have been used for theirmineralization via hydrolysis, oxidation and reduction reactions e.g. carbon based
nanomaterials, semiconducting oxides,magnetic oxides and nobelmetals nanoparticles [22–25, 28, 29]. In the
present work, different concentrations of ES are treatedwithGNPs solution. Thefinal reaction products were
examined byTEM,UV–Vis and FTIR techniques to confirm themineralization of ESmolecules. The
mechanismof ES degradation is discussed in the light of photocatalytic activity of GNPs.

Experimental

Synthesis ofGNPs
The colloidal solution ofGNPswere synthesized by the reduction of Tetra-Chloro Auric Acid (TCAA) (CDH
Make, AR grade) via Turkevichmethod [30]. The details of synthesis process have already been described in P.
Goel andM.Arora [26]. 150 ml of 0.5 mMTCAA (2%w/v) and 15 ml of 38.8 mMsodium citrate (3%w/v )
solutionswere prepared in double distilledwater in separate volumetric flasks. Themagnetically stirred TCAA
solutionwas heated at 180 °Conhot plate then 15 ml sodium citrate solutionwas swiftly transferred to it.
Resulting solution after 5 min turned slightly bluish and by the end of the reduction process i.e. within 20 min,
colloidal gold nanoparticle solution of brilliant wine red colorwas obtained. The schematic of the synthesis
procedure is shown in figure 1.

To explore the degradation of organochlorine ES via photocatalytic GNPs, different concentration of ES
solutions ranging from1ppm to 50 ppm (i.e. 1, 5, 10, 20, 50 ppm)were prepared in 2-Propanol (HPLC and
Spectroscopy grade, CDHMake) by dissolving technical grade endosulfan flakes. Successively, 5 ml of each from
1 ppm to 50 ppmES solutionswere reactedwith 0.5 mlGNPs suspension. Themorphological details of as

Figure 1. Schematic ofGNPs synthesis by citrate route.
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preparedGNPs andGNPs treated ES solution reaction product are inferred fromTransmission Electron
Microscopy (TEM) images of driedfiltrate scanned on JEOL-TEM (1011)microscope. The optical absorption
spectra of pure and treated samples were recorded in 200–1000 nm range by using ShimadzumakeUV–Vis
spectrophotometer (Model: UV-2401 PV). IR transmittance spectra of ES, GNPs and final treated solutions
were recorded in 4000–500 cm−1 region onM/S Brukermake, ALPHATmodel FTIR spectrophotometer at
ambient temperature.

Results and discussion

TEManalysis
Figures 2 and 3(a)–(c)present TEM images of as synthesizedGNPs and 100 ppmES solution after reactionwith
GNPs respectively. The pureGNPs exhibit uniformdistribution of spherical shaped nanoparticles with very
narrow size distribution in∼8.50±0.50 nm range. In ES:GNPs sample the imageswere recorded at different
locations under differentmagnifications. Infigure 3(a) the image indicates the formation of long rods (of length
in the range of∼1.5 to 3.5 μm) aswell asflower petal structure which are randomly distributed. It can also be
seen that these rods have grey color patches around themwhich seem to comprise of ultrafine particles. A
‘zoomed in’ version offigure 3(a) is shown infigure 3(b) at 200 nm scale which exhibits agglomeration ofGNPs
in rod shape and ultrafine amorphous carbon particles all over the place.

Infigure 3(c), the agglomeration of GNPs in rod,floral petal and feather shaped structures with ultrafine
particles are clearly visible in 200 nm scale. These agglomerated structures encourage localized surface plasmon

Figure 2.TEMofGNPs at 200 kMagnification.

Figure 3. (a)TEM images of 100 ppmES: GNPs sample at 2 μmscale showing rods as well as floral petal structures (b)Zoomed in
version of ‘a’ at 200 nm scale exhibiting agglomeration ofGNPs in rod shape and amorphous carbon particles (c) agglomeration of
GNPs as bigger ensembles.
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resonance in visible region and photocatalytically produced hot electrons and holes initiate hydrolysis, oxidation
and reduction chemical reaction for the degradation of ES pesticide into non-hazardous products [19, 20, 27].

UV–Vis spectroscopy studies
Optical absorption spectrumof as-preparedGNPs of∼9 nm size derived by citrate route of ruby redwine colour
solution (figure 4(a)) exhibit absorption peaks inUV and visible region at 324 nmand 529 nmdue to the inter-
band electrons transition from5d (valence) to 6sp (conduction) levels whereas the strong absorption at 529 nm
in as preparedGNPs is due to the LSPR transitions arising from6sp electrons transition to conduction band
[16, 18, 31]. LSPR peak appears due to the absorption of visible light because in small nanoparticlesmomentum
conservation is not required. This fact is further supported byTEM image ofGNPs inwhich uniformdispersion
of spherical shaped nanoparticles without any agglomeration is clearly visible. Absorption Spectra of ESwith
absorption peaks at∼242 and 290 nm is shown infigure 4(b). Infigure 5, the absorption spectra of 0.5 mlGNPs
solution treated ES (5 m.l. of each 01 ppm–50 ppmES) are presented and positions of different peaks obtained in
the spectra are listed in table 1. The interband and LSPR transition peaks are observed in 350–360 nmand
530–545 nm regions respectively.While the strong andweak peaks observed in 655–695 nmand 985–995 nm
pertain to SPR transitions ofminor andmajor axis of ellipsoidal shaped structures of aggregatedGNPs
ensembles respectively. The redshift in LSPRpeak positions as compared to pureGNPs is due to change inGNPs
polarizability on interactionwith the electric component of visible light and hence confirm the aggregation of
small and big sizedGNPs clusters. The changes in these peaks intensity reveal the decrease in the availability of
active sites i.e. lesser number of individual spherical shapedGNPs in the final reacted solution due to aggregation
ofGNPs. TEM images of these solutions support these results and exhibit different cylindrical/rod,floral petals
and feather shaped structures of GNPs aggregates. The small aggregates are an assembly of three/fourGNPs and

Figure 4. (a)UV–Vis spectra of GNPs suspension. (b)UV–Vis spectra of ES.
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bigger ensembles have a large number ofGNPswhich are arranged in cylindrical/rod, floral petals and feather
shaped structures. The systematic variation in solution colour change is observed i.e. fromwine red to pink to
violet to purple andfinally to light blue as the reaction proceeds betweenGNPs and different concentration ES
solutions. The colour gradient with ES concentrations is clearly apparent with naked eyes [26].

FTIR spectroscopy
The non-destructive infrared spectroscopy has beenwidely used for the analysis of structure by tentatively
assigning observed peaks pertaining to different bonding groups present inmaterials [32–40]. In this work,
GNPs, endosulfan (ES) andGNPs treated ES solutions in varied concentrations were characterized by IR
transmittance spectra recorded in 4000–500 cm−1 region at ambient temperature. This inferred information has
been used for proposing the reactionmechanism for the degradation of ES by photocatalytic GNPs. Technical
grade ES used in the present investigations, is amixture of 70% alpha and 30%beta isomers having chemical
structures as presented below infigure 6.

ES has cyclohexadiene as skeletal ring onwhich out of 6 chlorine, 4 (labelled as 2a, 2b, 3a and 3b) are bonded
in-plane at 6, 7, 8, 9 position of cyclohexadiene ring and the remaining 2Cl (1a, 1b) at 10 position above ring
structure, 6H are present at 1, 5, 5a, 6, 9, 9a positions,methano group at 6, 9 position and 2,4,3-benzodi-
oxathiepin-3-oxide of sulphite (SO3) group is bonded either below or above the hexa-chloro-
cyclohexadiene ring.

IR transmittance spectra of pure ES andGNPs exhibit characteristic vibrational peaks pertaining to adsorbed
moisture and different functional groups present as discussed in our earlier work [26]. IR transmittance spectra
of GNPs reactedwith 1 ppm, 5 ppm, 10 ppm, 20 ppmand 50 ppmES concentration solutions recorded in
4000–500 cm−1 region are presented in figure 7. The variations in peak positions and intensity of different
functional groups are discussed in detail in the forthcoming sections:

C–H stretching region
νC–Hstretching vibrations of hydrocarbon and hydrogenated amorphous carbon appear in 3000–2800 cm−1

region. In ES, the asymmetric (νas) and symmetric (νs) stretchingmodes of –CH3 group are obtained at 2971 and

Figure 5.UV–Vis spectra of GNPs treated ES solutions in 1 ppm–50 ppm range.

Table 1.Absorption Peak positions of 0.5 mlGNPs solution treated ES (5 ml of each 01 ppm–50 ppmES).

Peak position (nm)

Sample 1st peak 2nd peak 3rd peak 4th peak

01 ppm5 ml ES : 0.5 mlGNPs 350 542 657 986

05 ppm5 ml ES : 0.5 mlGNPs 354 536 681 984

10 ppm5 ml ES : 0.5 mlGNPs 356 534 684 985

20 ppm5 ml ES : 0.5 mlGNPs 356 532 689 974

50 ppm5 ml ES : 0.5 mlGNPs 358 530 693 994
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2886 cm−1 respectively and νas CH2 stretching vibration at 2933 cm
−1. The –CH2 stretchingmodes are stronger

than –CH3 stretchingmodes.However, in ES/GNPs samples, reverse trend is observed, i.e. –CH2 stretching
mode intensity is weaker than –CH3 stretchingmodes. This suggests the conformational sensitivity of –CH2

groupswith some of them in gauche configuration [41]. This indicates the formation of amorphous phase in the
ES:GNPs solution as seen in the TEMmicrographs also.

CH3 bending region
In ES,medium intensity δ (CH2) peak is observed in 1500–1450 cm

−1 region as broad bandwith three
components at 1482, 1464 and 1452 cm−1 which shows theweak side-by-side interaction between chains to ease
charge transfer and chainmotion in ES solution [42–44]. The component at 1482 cm−1 arises fromC–C skeletal
vibrations of transconformational chains.While, 1464 cm−1 and 1452 cm−1 components are tentatively
assigned as of CH3 bending asymmetrymode of partially ordered chain structure and combinationmode of
gauche defects with asymmetric deformation of the terminal CH3 group of ESmolecules [45–47] respectively. In
GNPs treated solutions, this peak appears at 1468 cm−1 with loss in intensity due to ES degradation and
aggregation ofGNPs into different size ensembles. These results are supported byTEM images showing small
clusters, chain and petal orfloral shapedGNPs ensembles and visible change in solution colour initially from
wine red tofinally light sky blue.

CH2wagging region
The characteristic CH2waggingmodes of gauche conformation [34] is obtained asmedium intensity band at
1373 cm−1 in ES and as doublet bandwithmaxima at 1379 and 1364 cm−1 inGNPs:ES solution. Itmeans
methyl groups exist in gem- or iso- dimethyl form in ES degraded final hydrocarbon product. The band
observed at 1364 cm−1 corresponds to gauche conformationwithmethyl groups in gem-form.While the
1379 cm−1 peak component arises from –CH3 iso- formumbrellamode. Themedium intensity for thismode
confirms both crystalline and amorphous phases in ES-GNP solution.

–SO3Vibrationalmodes
A-component andE- component of ν –SO3 asymmetric (νasym) and symmetric (νsym) stretchingmodes of –SO3

functional group are observed in the ES spectrum at 1269 and 1245 cm−1 respectively. The intensity of
1269 cm−1 band ismore than 1245 cm−1, due to strong in-plane hydrogen bond interaction between sulphite

Figure 6.Chemical Structure of (a)Endosulfan (b)α-Endosulfan and (c)β-Endosulfan.
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oxygen and propanol –OH functional group hydrogen atom as compared to their lateral interactions between
ESmolecules. ν –SO2 asymmetrical stretchingmode is obtained as strong peak at 1095 cm−1 alongwithmedium
intensity peak at 1072 cm−1 and veryweak intensity component at 1043 cm−1. The symmetrical stretching
modes of –SO2 group appear as strong bands at 1006 and 981 cm

−1 [41].While its bendingmodes are observed
asmedium intensity peaks at 538 and 508 cm−1 in ES. These peaks disappear inGNPs treated ES solutions IR
transmittance spectrawhich confirms the degradation of ES sulphite groupwithGNPs treatment.

Figure 7. (a) IR transmittance spectra of x ppmES (5 ml) (x=1, 5, 10, 20, 50 ppm) solutions treatedwith 0.5 mlGNPs in
4000–500 cm−1 regionwith Zoomed-in views of (b) 1275–1100 cm−1, (c) 850–800 cm−1 and (d) 800–580 cm−1 regions.
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C–Hbending, CH3 rocking andC–Hwagging vibrations
The very strong broad transmittance peak in 1225–1100 cm−1 regionwith components at (1193, 1145) cm−1

and (1180, 1168) cm−1 pertains toC–Hbend. andCH3 rockmodes respectively in ES IR transmittance
spectrum.While inGNPs treated ES solutions, three peak components are observed at 1162, 1128 and
1106 cm−1, as shown in figure 7(b) (Zoomed-in view of 1275–1100 cm−1 region). C–Hwagg.mode appears as
shoulder bandwith component andmedium intensity peak at (840 and 814) cm−1 and 816 cm−1 respectively in
IR transmittance spectra of ES andGNPs treated ES solutions (figure 7(c)).

C–Cstretch., C–Ostretch. andO–Cstretch. vibrations
νC–Cstretch. modes are observed as shoulder bands at 966 and 940 cm−1 in ES and as a very strong peak at
950 cm−1 inGNPs treated ES solutions IR spectra. νC–Ostretch and νO–Cstretch.modes are obtained asmedium
intensity peaks at 917, 880, 858 cm−1 in ES and inGNPs treated ESfinal solutions, these peaks disappeared. This
confirms the degradation of oxygen bonded carbon functional groups in ESmolecule.

C–Cl stretching vibrations
In ES, six C–Cl bonds are present in three different environments labelled as 1a, 1b, 2a, 2b, 3a and 3b. νC–Cl
stretchingmodes of these –C(Cl)2 andCl–C=C–Cl groups are obtained at (793, 783), 754, 700, 673, (637, 622,
600), 582 cm−1 in pure ES IR spectra figure 7(d) (in zoomed view of 800–580 cm−1 region). These peak
disappear inGNPs treated ES solutions due to photocatalytic reductive dechlorination reaction inwhich all the
chlorine bonded groups degrade simultaneously.

IR spectroscopic studies revealed the complete degradation of ES on treatment withGNPs as evidenced from
the disappearance of carbonyl, –SO3 andC–Cl functional groups vibrational peaks observed in
1275–1150 cm−1, 850–800 cm−1 and 800–580 cm−1 regions respectively.

Proposedmechanism
The use of noblemetal nanoparticles (NPs) as a photocatalyst hasmany advantages like high optical absorption
in the visible region of solar spectrum, no band gap and the availability of large number of high energy electrons
at their surface to initiate chemical reactionwith adsorbedmolecules [19, 20, 22, 48–55]. InGNPs,most of the
conduction electrons (6sp states) are present at the surface ofNPs and very small number of them are distributed
above Fermi levels. At ambient condition, GNPs absorb both visible andUV components fromnormal sunlight
simultaneously due to LSPR and inter-band transitions between 5d and 6sp states. The conduction electrons
gain the energy of light irradiation and distribute large number of conduction electrons to high energy levels.
The availability of such high energy electrons (hot electrons) at the surface ofGNPs are suitable for the
degradation of ESmolecules adsorbed on their surface by the oxidation, reduction and hydrolysis chemical
reactions. The schematic of the proposedmechanism is shown in the following figure 8.

In the present investigations, the degradation of commercial grade ES solutions in varied concentrations
usingGNPs is discussed in the light of phototcatalytic activity of GNPs. Based on the earlier reported ES
degradation pathways, we exploited the probable photochemical process in the current studies. ES sulphite
functional group hydrolyses to form less toxic endosulfan diol [16]which oxidises to endosulfan ether to
endosulfan hydroxyl carboxylic acid/endosulfan lactone and endosulfan hydroxyether. The intermediate
reaction products finallymineralize to sulphur dioxide and carbon dioxide. Themineralization of carcinogenic
ES chlorinated skeleton ring takes place by reductive dechlorination reaction [56–60]. Very fast reductive
reaction removes all six chlorine atoms labelled as 1a/1b, 2a/2b, 3a/3b simultaneously as Cl2 gas. The proposed
mechanism is supported byTEM,UV–Vis and FTIR studies. Themineralization chemical reaction pathway is
also given below (figure 9).

Conclusion

The results presented in this study provide definitive evidence for themineralization of ES pesticide by
photocatalytic GNPs. TEM, optical absorption and FTIR analytical techniqueswere used to confirm the nearly
complete degradation of ES pesticide. Based upon the results derived frommorphological, optical absorption
and IR transmittance spectra of GNPs colloidal solution treated ES (1, 5, 10, 20 and 50 ppm) solutions, ES
degradation via intermediate hydrolysis, oxidation and reduction reactionmechanismhas been proposed. The
agglomeration ofGNPs into small and big ensembles bring visible change in colloidal solution coloration. TEM
images confirm the agglomeration ofGNPs into different patternswhose size varies from fewmicrometer to
millimetre. Optical absorption spectra of GNPs treated ES solutions showpeaks pertaining to the inter-band,
LSPR of individual and clusteredGNPs inUV and visible regionswith the variation in peaks intensity. IR
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transmittance spectra also reveal the nearly complete disintegration of ES pesticide by the formation of
amorphous carbon and hydrocarbons as final reaction products. Hence, novel GNPs are found to be a suitable
and efficient photocatalyst for providing an easy and swift way to eradicate highly persistent toxic ES pesticide
from the environment with a zerowaste.

Figure 8. Schematic for the proposed degradationmechanismof ES pesticide.

Figure 9.ProposedChemical pathway for degradation of ES pesticide.
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