LaScO₃/SrTiO₃: A conducting polar heterointerface of two *3d* band insulating perovskites

Cite as: Appl. Phys. Lett. **116**, 051603 (2020); https://doi.org/10.1063/1.5138718 Submitted: 18 November 2019 . Accepted: 23 January 2020 . Published Online: 04 February 2020

Sumit Kumar, Jyoti Kaswan, 🔟 Biswarup Satpati, ២ A. K. Shukla, Bhasker Gahtori, ២ J. J. Pulikkotil, and ២ Anjana Dogra

ARTICLES YOU MAY BE INTERESTED IN

Oxygen vacancies: The (in)visible friend of oxide electronics Applied Physics Letters **116**, 120505 (2020); https://doi.org/10.1063/1.5143309

Correlation transports at p-/n-types in electron metastable perovskite family of rare-earth nickelates Applied Physics Letters **116**, 051902 (2020); https://doi.org/10.1063/1.5140557

Epitaxial stabilization of ultra thin films of high entropy perovskite

Applied Physics Letters 116, 071601 (2020); https://doi.org/10.1063/1.5133710

Appl. Phys. Lett. **116**, 051603 (2020); https://doi.org/10.1063/1.5138718 © 2020 Author(s).

LaScO₃/SrTiO₃: A conducting polar heterointerface of two *3d* band insulating perovskites

Cite as: Appl. Phys. Lett. **116**, 051603 (2020); doi: 10.1063/1.5138718 Submitted: 18 November 2019 · Accepted: 23 January 2020 · Published Online: 4 February 2020

Sumit Kumar,^{1,2} Jyoti Kaswan,^{1,2} Biswarup Satpati,³ (p A. K. Shukla,^{1,2} (p Bhasker Gahtori,^{1,2} J. J. Pulikkotil,^{1,2} (p and Anjana Dogra^{1,2,a)} (p

AFFILIATIONS

¹CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India
²Academy of Scientific and Innovative Research, CSIR-NPL Campus, New Delhi 110012, India
³Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata 700 064, India

^{a)}anjanad@nplindia.org

ABSTRACT

This work reports a quasi-two-dimensional electron gas (q-2DEG) system at the interface of two wideband-gap insulators, (TiO₂-terminated) SrTiO₃ and LaScO₃, with a minimum thickness of 4-unit cell (uc). The highly crystalline and abrupt heterointerface is confirmed with high-resolution electron microscopy. The mixed Ti^{4+} and Ti^{3+} valence states (for 4 uc of LaScO₃) obtained from the x-ray photoelectron spectroscopy study suggest an intrinsic electronic reconstruction at the interface, leading to a metallic nature. This origin is well supported by density functional theory calculations that reveal an emergence of 3.3 states/eV/spin at the Fermi level for 4 uc in accordance with the polar catastrophe model. The study offers one more perovskite heterostructure, like LaAlO₃/SrTiO₃, for unraveling the q-2DEG phenomena toward a clear mechanism and futuristic applications.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5138718

The lattice symmetry breaking at the heterointerface of layered perovskite oxides leads to unique phenomena,1-7 absent in individual layers. The most acknowledged example is the quasi two-dimensional electron gas (q-2DEG) with a very high carrier mobility at the interface of two wideband-gap insulators, LaAlO₃ (~5.6 eV) and SrTiO₃ $(\sim 3.2 \text{ eV})$.¹ This q-2DEG behavior, different from the strained semiconductor heterointerface, is attributed to the electronic reconstruction of Ti⁴⁺ into Ti³⁺ ions at the interface to minimize the electrostatic potential due to polar discontinuity between $(LaO)^+$ and $(TiO_2)^0$ layers; this is known as the polar catastrophe model. The discovery boosted an extensive research in polar perovskite ABO3/SrTiO3 heterointerfaces with different 3d cations at the B-site. Interestingly, the heterointerface with LaTiO₃^{8,9} and LaVO₃¹⁰ shows metallicity, however, it remains insulating for LaMnO₃¹¹ and LaCrO₃.¹² It is observed that the d-cation charge reorganization for (Mn, Cr) cations lowers the electrostatic potential and hinders the q-2DEG state. Moreover, the insulting state in LaTiO₃ and LaVO₃ is of Mott-type (due to highly correlated 3d electrons), which allows a weak insulting gap and minimal carrier mobility than the 3p Al-based prototype LaAlO₃ system. It is shown that strain-mediated lattice distortion can suppress the weak Mott gap in LaTiO₃ (~0.1 eV), showing an extrinsic 3D bulk transport; although for LaVO₃ (\sim 1.1 eV), the conduction is of 2D-type.

Importantly, the conducting interface is not limited to polar oxides, but also reported for non-polar perovskites, e.g., lattice strain driven for $CaZrO_3$,¹³ while extrinsic oxygen vacancy driven for $CaHfO_3$.¹⁴ Thus, minimal structural imperfection may also lead to 3D bulk conductivity, either in the SrTiO₃ substrate by cation intermixing (doping) due to high energy plume kinematics or in the thin film from oxygen non-stoichiometry.

On the ground, the interface conductivity can be driven by both "intrinsic" polar discontinuity,¹⁵ or strain-induced weak polarization⁷ (2D transport) and "extrinsic" cation inter-diffusion¹⁶ or oxygen vacancies^{17–19} (3D transport). This puts the idealness of real samples as the primary condition for intrinsic 2D transport, followed by a wideband gap of two constituent oxides with a low lattice mismatch. Owing to this, *4p* Ga-based band insulators, LaGaO₃ (~4.4 eV)²⁰ and NdGaO₃ (~3.8 eV)²¹ show q-2DEG transport similar to the *3p* Al-based prototype LaAlO₃ system, however, the low-stability of Gallium makes the growth complex for exploring a clear mechanism. In this work, we explore the *3d* Sc-based wideband gap insulator LaScO₃ (~5.7 eV), and report, theoretically and experimentally, a "polar discontinuity"-driven q-2DEG system in the LaScO₃/SrTiO₃ heterostructure, quite analogous to the prototype *3p*-based LaAlO₃/ SrTiO₃ system.

The structural and electronic properties of bulk LaScO₃ and SrTiO₃, and those of LaScO₃/SrTiO₃ heterostructures are studied by means of the full potential linearized augmented plane wave²² (FP-LAPW) method as implemented in the WIEN2K suite of programs. The details of the calculations are provided in the supplementary material.

For the bulk SrTiO₃ and LaScO₃, the pseudo-cubic equilibrium lattice constant is determined as 3.94 Å and 4.07 Å, respectively, which are in good agreement with the experimental data, within 1% of error. From these parameters, it can be anticipated that the epitaxially grown LaScO₃ films would be compressively strained on the SrTiO₃ substrate with a lattice mismatch of 3.2%. Within similar approximations, the computed lattice constant of 3.82 Å for LaAlO₃ shows a tensile nature of the strain at the LaAlO₃/SrTiO₃ hetero-interface. Thus, these findings suggest that although LaScO₃ and LaAlO₃ are isoelectronic and isostructural systems, the LaScO₃/SrTiO₃ represents a compressively strained system, in contrast to the LaAlO₃/SrTiO₃, which is tensile strained.

Besides, the electronic bandgaps (Eg) of SrTiO₃, LaScO₃, and LaAlO₃ are computed to be 2.0 eV, 2.8 eV, and 3.6 eV, respectively. Thus, we find that Eg (SrTiO₃) < Eg (LaScO₃) < Eg (LaAlO₃). Note that, although the Eg values are considerably smaller than the experimental values, these values still serve as a good approximation in empirically suggesting that electrons will flow into the SrTiO₃ substrate from the LaScO3 and LaAlO3. The electronic structure of the structurally relaxed LaScO3/SrTiO3 heterostructure is described in terms of their layer resolved density of states (DOS) and band structure, as shown for two cases with 3 and 4 LaScO₃ MLs in Figs. 1(a) and 1(b), respectively. For 3 ML LaScO₃/SrTiO₃, the LaO/TiO₂ interface is insulating with a bandgap of 0.6 eV. The valence band spectra are dominated by the O 2p states of the substrate, while the conduction band minimum (CBM) is dominated by the Ti 3d states. The Sc 3d states are \sim 1 eV above the CBM. On the other hand, DOS spectra for 4 ML LaScO₃/SrTiO₃ show finite states at the Fermi energy, revealing a q-2DEG state. Importantly, the critical thickness of 4 MLs for the emergence of q-2DEG in LaScO₃/SrTiO₃ is identical to that for the

FIG. 1. The layer resolved density of states (DOS) for the LaScO₃/SrTiO₃ heterostructure with (a) 3 monolayers and (b) 4 monolayers of the LaScO₃ film.

LaAlO₃/SrTiO₃.⁴ Furthermore, the layer resolved DOS reveals that the conducting carriers are derived from the Ti *3d* bands with confinement to nearly 2 MLs of SrTiO₃. The total DOS at Fermi energy is determined to be 3.3 states/eV/spin, of which the interface TiO₂ layer contributes ~15% and the sub-interface TiO₂ layer has its contribution as ~11%. The systematic downward shift in the Ti *3d* band of the SrTiO₃ substrate, due to the increasing built-up of the electrostatic potential in the LaScO₃ films, is however compensated by the upward shift of the O *2p* bands of LaScO₃. As evident from Fig. 1(b), the O *2p* bands of the surface ScO₂ layers therefore are introduced with holes. The very kind of charge transfer, from surface layers to the TiO₂ hetero-interface layers, is previously observed in the LaAlO₃/SrTiO₃ heterostructure, in line with the predictions of the polar catastrophe model.

To test the theoretical finding of q-2DEG in the LaScO₃/SrTiO₃ heterostructure, the epitaxial thin films of LaScO₃ with varying thickness (3-15 unit cell) are deposited on the (001) TiO2-terminated SrTiO₃ single-crystal substrate by the pulsed laser deposition (PLD) technique with layer-by-layer growth monitoring by in situ reflection high-energy electron diffraction (RHEED). The details of the growth and characterization tools are provided in the supplementary section. Figure 2(a) shows the regular RHEED intensity oscillations for 4- and 15-unit cell (uc) thick films recorded in situ during the growth, which clearly exhibits the two-dimensional (2D) epitaxial growth of the LaScO3. The 2D streaky RHEED pattern shown in the inset of Fig. 2(a) confirms the layer-by-layer growth for the LaScO₃ film with identical distance between two streaks to that for the SrTiO₃ substrate. Complimenting the RHEED results, the high-resolution x-ray diffraction (HRXRD) pattern for the thicker (~40 nm) film shows only the (00l) reflections of the perovskite structure with the out-of-plane lattice parameter, c = 4.058 Å (see Fig. S1 in the supplementary material). Moreover, the surface analysis by atomic force microscopy for the 8 uc thick film reveals the persistence of similar terraces (see Fig. S2 in the supplementary material), as for the before-growth TiO₂-terminated surface of the SrTiO₃ substrate with approximately 0.39 nm step

FIG. 2. (a) RHEED intensity oscillation during the growth of the thin film along with the RHEED pattern of the bare substrate (left) and thin film (right). (b) XTEM image of the 10 uc structure. (c) Fourier filtered XTEM image and (d) SAED pattern of the same structure and same image shown in (b).

height. This indicates that LaScO₃ adopts a pseudo-cubic symmetry over the SrTiO₃ substrate, giving an abrupt interface between two oxides. The interface quality is further examined for the 10 uc thick film with cross-sectional transmission electron microscopy (XTEM) along with the selected area electron diffraction (SAED) patterns. The XTEM on the 5 nm scale shows the clear boundary between the SrTiO₃ substrate and the LaScO₃ thin film with a thickness of 4.56 nm, as shown in Fig. 2(b). The Fourier filtered XTEM image for the same micrograph shows an atomically flat and coherent heterointerface with smooth relaxation in the thin film [see Fig. 2(c)], excluding any cation inter-diffusion between the substrate and thin film. The lattice parameter analysis by XTEM and SAED [see Fig. 2(d)] gives the single-domain and tetragonally strained LaScO₃ thin film with inplane a^{*} = 4.05 Å, which is in well consistent with a^{*} = 4.058 Å from the HRXRD study.

The highly crystalline LaScO₃/SrTiO₃ interface is further subjected to sheet resistance measurement as a function of temperature, R(T) from room temperature to 30 K. The heterointerface with LaScO₃ thickness ≥ 4 uc shows metallic behavior down to 30 K [see Fig. 3], which indicates the q-2DEG formation at the LaScO₃/SrTiO₃ heterointerface. The measured room temperature carrier concentration (n_s) of the order of 10^{13} cm⁻² at the interface and the carrier mobility ($\mu_{\rm H}$) of 4–7 cm² V⁻¹ s⁻¹ (for 4–15 uc) from Hall measurement are almost similar to the prototype LaAlO₃/SrTiO₃.^{1,23} Thus, considering the nearly equal bandgap and dielectric constant of LaScO₃ (~5.7 eV, 29) to LaAlO₃ (~5.6 eV, 25), at the first point, the observed interface conductivity in our heterointerface above critical thickness (i.e., ≥ 4 uc) can be attributed to the polar discontinuity between polar (LaO)⁺ and non-polar (TiO₂)⁰ layers, similar to LaAlO₃/SrTiO₃.^{1,15}

Now, we discuss the possible origin mechanism of a conducting interface in transport measurements, considering both "intrinsic" polar discontinuity (2D transport) and "extrinsic" cation disorder and oxygen vacancies (3D transport). The foremost important thing is that our epitaxial thin film is grown with a laser fluence of $\sim 1 \text{ J/cm}^2$, similar to LaAlO₃,²⁴ while it is significantly lower than for LaTiO₃,⁸⁹ LaVO₃,¹⁰ LaGaO₃,²⁰ etc. to exclude the possibility of high energy La/Sc

FIG. 3. The thermal variation of sheet resistance showing a metallic behavior. The inset shows the hall mobility of the 15 uc LaScO₃/SrTiO₃ structure plotted against $1/T^2$ with a high temperature linear variation (red line), corresponding to e-e (2D) interactions.

inter-diffusion (doping) to the SrTiO₃ substrate, which is further supported by the XTEM study. To exclude oxygen vacancies in the TiO2terminated SrTiO₃ substrate, the high insulating nature after annealing of the bare substrate at deposition conditions is verified before the growth. Furthermore, the LaScO3 thin film deposition is performed in $p_{O2} \sim 10^{-4}$ mbar, similar to LaAlO₃,^{25–27} which excludes any major contribution to interface conductivity from the oxygen vacancies. Moreover, on lowering of temperature from 300 K to 50 K, a minimal decrease in $n_s \sim 9.4-4.7 \times 10^{13}$ cm⁻² suggests a 2D transport behavior (see Fig. S3 in the supplementary material). More importantly, the carrier mobility shows $1/T^2$ dependence at high temperatures (150 K-300 K) in accordance with electron-electron interactions at the 2D interface, a rather exponential increase for electron-phonon interactions in 3D transport.²⁵ At lower temperatures, the mobility shows a saturation-like behavior to the low-temperature limit with the highest carrier mobility of 1.88×10^2 cm² V⁻¹ s⁻¹ at 50 K. Thus, the transport measurements reveal the formation of q-2DEG state at the LaScO₃/ SrTiO₃ heterointerface, primarily driven by "intrinsic" polar discontinuity in the system.

Here, we point out that the obtained $n_s \sim 9.4-4.7 \times 10^{13} \text{ cm}^{-2}$ (for 10-15 uc) is significantly lower than the calculated charge transfers due to polar-discontinuity i.e., $0.5e^{-1}$ Ti or $n_s \simeq 3 \times 10^{14}$ cm⁻² in the polar catastrophe model. The lower experimental n_s value can be directly associated with the presence of two kind of electrons, free (or mobile) as considered in the polar catastrophe scenario and second localized electrons either "intrinsically" in 3d-based oxides or "extrinsically" trapped in defect states.²⁸ The presence of localized electrons reduces the effective charge transfer due to polar discontinuity. The picture of two kind "free" and "localized" charge carriers is well supported by Shubnikov-de Haas oscillations measurement.²⁹ Besides, as an alternative, Yu et al.³⁰ proposed that polar discontinuity is thermodynamically destabilized by the spontaneous formation of defects like oxygen vacancies leading to a conducting interface, while some of the oxygen vacancies are further compensated by anti-site pairs (cation disorder), thus, reducing the carrier density in comparison to that calculated from polar discontinuity.

The experimental existence of electrons which contribute to the conducting interface is analyzed by x-ray photoelectron spectroscopy (XPS). In Fig. 4, we compare the Ti 2p core level spectra of 3 uc and 4 uc thick LaScO₃ films grown on TiO₂-terminated SrTiO₃. For nonconducting LaScO₃ (3 uc)/SrTiO₃, spin-orbit doublet peaks of Ti $2p_{3/2}$ and Ti $2p_{1/2}$ appear at 458.4 and 464.2 eV core level binding energy (BE), respectively, corresponding to the 4^+ charge state of Ti ions. In comparison, for the conducting LaScO3 (4 uc)/SrTiO3, peaks corresponding to Ti⁴⁺ appear at 0.1 eV higher BE compared to 3 uc LaScO₃/SrTiO₃. Besides, we can clearly observe the emergence of an extra well resolved feature at the lower BE side of the Ti $2p_{3/2}$ main peak of 4 uc LaScO₃/SrTiO₃. To quantify the peak parameters, energy position and the full width at half maximum (FWHM), we have performed χ^2 iterative fitting of the Ti $2p_{3/2}$ region using two components corresponding to the main peak and weaker intensity lower BE side feature. These fittings are shown in Fig. 4(b). The energy position of the lower BE feature [shaded region in Fig. 4(b)] is found to be separated by 1.9 eV from the main peak and such a feature has been attributed to the Ti^{3+} valence state. This Ti^{3+} related feature, a consequence of the polar catastrophe induced electronic reconstruction of Ti ions at the interface, has been taken as the signature of quasi

grown on a (001) 110_2 -terminated of 10

Appl. Phys. Lett. **116**, 051603 (2020); doi: 10.1063/1.5138718 Published under license by AIP Publishing

FIG. 4. (a) Ti 2p core-level photoemission spectra of the 3 uc and 4 uc LaScO₃/SrTiO₃. Spectra have been normalized at *the* highest peak and staggered vertically for clarity. (b) Ti 2p3/2 core-level photoemission spectra for 3 uc and 4 uc LaScO₃/SrTiO₃. Experimental spectra (open circles), fitted spectra (green solid line), deconvoluted components used to fit Ti⁴⁺ (red dashed line), and Ti³⁺ (blue shaded) along with the simulated Shirley background (pink dashed line) are also shown.

two-dimensional electron gas (q-2DEG) in polar/non-polar oxide heterostructures. The relative percentage (normalized peak area) of Ti³⁺ to Ti⁴⁺ has been estimated to be 6.8% for 4 uc LaScO₃/SrTiO₃, while it is negligible (0.85%) for 3 uc LaScO₃/SrTiO₃. Peak fittings revealed that the FWHM of the Ti $2p_{3/2}$ (Ti⁴⁺) for 3 and 4 uc LaScO₃/SrTiO₃ turns out to be 1.05 and 1.15 eV, respectively. The shift of the Ti 2pcore level toward the higher BE side for the conducting interface (4 uc) and the increase in its FWHM compared to non-conducting 3 uc LaScO₃/SrTiO₃ can be the consequence of the band bending effect and it has also been considered as the evidence for the presence of q-2DEG in polar/non-polar systems.^{32,33,37}

In summary, the highly crystalline $LaScO_3$ epitaxial thin films are grown on a (001) TiO₂-terminated SrTiO₃ substrate by the PLD

technique with two-dimensional growth ensured by in situ RHEED. The abrupt interface quality with no substrate-film inter-diffusion is confirmed with the cross-sectional TEM study. The electric transport measurements reveal the formation of q-2DEG at the heterointerface for films with LaScO₃ thickness \geq 4 uc, at room temperature carrier concentration of 10^{13} cm⁻² at the interface, and a mobility of 4–7 cm² V^{-1} s⁻¹, quite similar to the prototype LaAlO₃/SrTiO₃ q-2DEG system. Finally, the XPS study reveals electronic reconstruction of Ti ions at the interface as a signature of the "Polar Catastrophe" origin of the q-2DEG state. On top of this, the DFT calculations show the emergence of q-2DEG in the LaAlO₃/SrTiO₃ heterostructure in accordance with the polar catastrophe model, in which the increasing electrostatic potential due to the increasing LaScO₃ film thickness transfers charge from the surface layer to the hetero-interface. Thus, the study provides a 3d band-insulator based q-2DEG system, beyond the existing 3pbased LaAlO₃/SrTiO₃, to explore futuristic quantum applications.

ARTICLE

See the supplementary material which contains the theoretical calculations and experimental methods of the present study. Figs. S1 S3 illustrate the HRXRD, AFM, and Hall mobility measurement of the LaScO₃/SrTiO₃ heterostructure, respectively.

The authors are grateful to Director, NPL for his constant encouragement and support. A.D. and J.J.P. acknowledge the funding from DST (Project No. #EMR/2014/00/004). We thank H K Singh for his support while performing R(T) measurement in his lab. S.K. is thankful to the CSIR (No. 31/001(0463)2016-EMR-I) for the fellowship.

REFERENCES

- ¹A. Ohtomo and H. Y. Hwang, Nature **427**, 423 (2004).
- ²A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).
- ³P. Kumar, P. Pal, A. K. Shukla, J. J. Pulikkotil, and A. Dogra, *Phys. Rev. B* **91**, 115127 (2015).
- ⁴A. Rastogi, J. J. Pulikkotil, S. Auluck, Z. Hossain, and R. C. Budhani, Phys. Rev. B 86, 075127 (2012).
- ⁵D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, Phys. Rev. Lett. **107**, 056802 (2011).
- ⁶A. M. R. V. L. Monteiro, D. J. Groenendijk, I. Groen, J. de Bruijckere, R. Gaudenzi, H. S. J. van der Zant, and A. D. Caviglia, Phys. Rev. B 96, 020504 (2017).
- ⁷G. N. Daptary, P. Kumar, A. Dogra, and A. Bid, Phys. Rev. B **98**, 035433 (2018).
- ⁸J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, and J. Lesueur, Nat. Commun. 1, 89 (2010).
- ⁹F. J. Wong, S.-H. Baek, R. V. Chopdekar, V. V. Mehta, H.-W. Jang, C.-B. Eom, and Y. Suzuki, Phys. Rev. B **81**, 161101 (2010).
- ¹⁰Y. Hotta, T. Susaki, and H. Y. Hwang, Phys. Rev. Lett. **99**, 236805 (2007).
- ¹¹J. Garcia-Barriocanal, F. Y. Bruno, A. Rivera-Calzada, Z. Sefrioui, N. M. Nemes, M. Garcia-Hernández, J. Rubio-Zuazo, G. R. Castro, M. Varela, S. J. Pennycook, C. Leon, and J. Santamaria, Adv. Mater. 22, 627 (2010).
- ¹²R. Colby, L. Qiao, K. H. L. Zhang, V. Shutthanandan, J. Ciston, B. Kabius, and S. A. Chambers, Phys. Rev. B 88, 155325 (2013).
- ¹³Y. Chen, F. Trier, T. Kasama, D. V. Christensen, N. Bovet, Z. I. Balogh, H. Li, K. T. S. Thydén, W. Zhang, S. Yazdi, P. Norby, N. Pryds, and S. Linderoth, Nano Lett. **15**, 1849 (2015).
- ¹⁴M. Zhang, K. Du, T. Ren, H. Tian, Z. Zhang, H. Y. Hwang, and Y. Xie, Nat. Commun. **10**, 4026 (2019).
- ¹⁵S. Thiel, <u>Science</u> **313**, 1942 (2006).

- ¹⁶N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006).
- ¹⁷A. H. Al-Tawhid, J. R. Frick, D. B. Dougherty, and D. P. Kumah, J. Vac. Sci. Technol., A 37, 021102 (2019).
- ¹⁸N. C. Bristowe, P. B. Littlewood, and E. Artacho, Phys. Rev. B 83, 205405 (2011).
- ¹⁹G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, Phys. Rev. Lett. **98**, 216803 (2007).
- ²⁰P. Perna, D. Maccariello, M. Radovic, U. Scotti di Uccio, I. Pallecchi, M. Codda, D. Marré, C. Cantoni, J. Gazquez, M. Varela, S. J. Pennycook, and F. M. Granozio, Appl. Phys. Lett. **97**, 152111 (2010).
- ²¹C. Li, Q. Xu, Z. Wen, S. Zhang, A. Li, and D. Wu, Appl. Phys. Lett. **103**, 201602 (2013).
- ²²P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luitz, "An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties" (Vienna University Technology, 2001).
- ²³T. R. Paudel and E. Y. Tsymbal, Phys. Rev. B **96**, 245423 (2017).
- ²⁴M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Phys. Rev. Lett. **102**, 166804 (2009).
- ²⁵F. Trier, D. V. Christensen, and N. Pryds, J. Phys. Appl. Phys. **51**, 293002 (2018).
- ²⁶A. Kalabukhov, R. Gunnarsson, J. Börjesson, E. Olsson, T. Claeson, and D. Winkler, Phys. Rev. B 75, 121404 (R) (2007).
- ²⁷S. Y. Moon, C. W. Moon, H. J. Chang, T. Kim, C.-Y. Kang, H.-J. Choi, J.-S. Kim, S.-H. Baek, and H. W. Jang, Electron. Mater. Lett. **12**, 243 (2016).
- ²⁸J. Biscaras, S. Hurand, C. Feuillet-Palma, A. Rastogi, R. C. Budhani, N. Reyren, E. Lesne, J. Lesueur, and N. Bergeal, Sci. Rep. 4, 6788 (2015).

- ²⁹S. Gariglio, A. Fête, and J.-M. Triscone, J. Phys.: Condens. Matter 27, 283201 (2015).
- **30**L. Yu and A. Zunger, Nat. Commun. 5, 5118 (2014).
- ³¹Y. Z. Chen, N. Bovet, F. Trier, D. V. Christensen, F. M. Qu, N. H. Andersen, T. Kasama, W. Zhang, R. Giraud, J. Dufouleur, T. S. Jespersen, J. R. Sun, A. Smith, J. Nygård, L. Lu, B. Büchner, B. G. Shen, S. Linderoth, and N. Pryds, Nat. Commun. 4, 1371 (2013).
- ³²G. Drera, G. Salvinelli, A. Brinkman, M. Huijben, G. Koster, H. Hilgenkamp, G. Rijnders, D. Visentin, and L. Sangaletti, Phys. Rev. B 87, 075435 (2013).
- ³³E. Slooten, Z. Zhong, H. J. A. Molegraaf, P. D. Eerkes, S. de Jong, F. Massee, E. van Heumen, M. K. Kruize, S. Wenderich, J. E. Kleibeuker, M. Gorgoi, H. Hilgenkamp, A. Brinkman, M. Huijben, G. Rijnders, D. H. A. Blank, G. Koster, P. J. Kelly, and M. S. Golden, Phys. Rev. B 87, 085128 (2013).
- ³⁴S. Nemšák, G. Conti, G. K. Palsson, C. Conlon, S. Cho, J. E. Rault, J. Avila, M.-C. Asensio, C. A. Jackson, P. Moetakef, A. Janotti, L. Bjaalie, B. Himmetoglu, C. G. Van de Walle, L. Balents, C. M. Schneider, S. Stemmer, and C. S. Fadley, Appl. Phys. Lett. **107**, 231602 (2015).
- ³⁵P. Xu, Y. Ayino, C. Cheng, V. S. Pribiag, R. B. Comes, P. V. Sushko, S. A. Chambers, and B. Jalan, Phys. Rev. Lett. **117**, 106803 (2016).
- ³⁶M. Takizawa, S. Tsuda, T. Susaki, H. Y. Hwang, and A. Fujimori, Phys. Rev. B 84, 245124 (2011).
- ³⁷A. Koitzsch, J. Ocker, M. Knupfer, M. C. Dekker, K. Dörr, B. Büchner, and P. Hoffmann, Phys. Rev. B 84, 245121 (2011).
- ³⁸M. Sing, G. Berner, K. Goß, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S. A. Pauli, C. W. Schneider, P. R. Willmott, M. Gorgoi, F. Schäfers, and R. Claessen, Phys. Rev. Lett. **102**, 176805 (2009).