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Abstract
The present work deals with the seasonal variations in the contribution of sources to PM2.5 and PM10 in Delhi, India. Samples of
PM2.5 and PM10 were collected from January 2013 to December 2016 at an urban site of Delhi, India, and analyzed to evaluate
their chemical components [organic carbon (OC), elemental carbon (EC), water-soluble inorganic components (WSICs), and
major and trace elements]. The average concentrations of PM2.5 and PM10 were 131 ± 79 μg m−3 and 238 ± 106 μg m−3,
respectively during the entire sampling period. The analyzed and seasonally segregated data sets of both PM2.5 and PM10 were
used as input in the three different receptor models, i.e., principal component analysis-absolute principal component score (PCA-
APCS), UNMIX, and positive matrix factorization (PMF), to achieve conjointly corroborated results. The present study deals
with the implementation and comparison of results of three different multivariate receptor models (PCA-APCS, UNMIX, and
PMF) on the same data sets that allowed a better understanding of the probable sources of PM2.5 and PM10 as well as the
comportment of these sources with respect to different seasons. PCA-APCS, UNMIX, and PMF extracted similar sources but in
different contributions to PM2.5 and PM10. All the three models extracted 7 similar sources while mutually confirmed the 4 major
sources over Delhi, i.e., secondary aerosols, vehicular emissions, biomass burning, and soil dust, although the contribution of
these sources varies seasonally. PCA-APCS and UNMIX analysis identified a less number of sources (besides mixed type) as
compared to the PMF, which may cause erroneous interpretation of seasonal implications on source contribution to the PMmass
concentration.
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Introduction

Delhi, the capital of India, has been in the limelight recently
for all the wrong reasons about air pollution, bearing the

choking level of air pollutants in the ambient atmosphere.
Particulate matter (PM) (particularly PM2.5 and PM10) is one
of the important atmospheric pollutants which supremely gov-
erns the air quality of the megacity. PM has adverse effects on
regional air quality, visibility, atmospheric chemistry, and
overall on global climate (IPCC 2013; Pui et al. 2014;
Seinfeld and Pandis 2016; Singh et al. 2017). Several studies
have identified and reported the harmful effects of PM pollu-
tion on human and biota health that include cardiovascular
and respiratory diseases, allergies, respiratory tract inflamma-
tion, and even deaths in severe cases (Schwartz et al. 1996;
Pope and Dockery 2006; Li et al. 2009; Pope et al. 2009; Tie
et al. 2009; Brauer et al. 2015). A recent study revealed that air
pollution causes 26% of premature deaths in India where sole-
ly PM2.5 was accountable for around 12.4 lakh deaths in the
year 2017 (Balakrishnan et al. 2019). Numerous studies in the
past two decades have unveiled the significance of size,
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composition, and sources of PM in health-related studies
(Schlesinger et al. 2006; Kelly and Fussell 2012; Brauer
et al. 2015; Pongpiachan et al. 2017), which urges the need
to identify the composition and sources of PM to formulate the
preventive measures and abatement strategies to reduce PM
pollution.

PM has varied sources and is made up of different compo-
nents (such as acids, organic and inorganic components, dust
particles, metals), which have varying extents of health im-
pacts and toxicity (Pongpiachan et al. 2013; Pongpiachan
et al. 2014; Pongpiachan and Iijima 2016), highlighting the
importance and necessity of employing source apportionment
studies to comprehend the PM formation processes and their
sources (Chuay et al. 2020). Source apportionment of PM is
commonly performed through receptor or source-oriented
models that include chemical mass balance (CMB), principal
component analysis-absolute principal component scores
(PCA-APCS), UNMIX, and positive matrix factorization
(PMF). Several studies have already published comprehensive
details about statistical and theoretical aspects of these models
(Thurston and Spengler 1985; Paatero and Tapper 1994;
Henry 2003; Brown and Hafner 2005; Song et al. 2006;
Viana et al. 2008; Paatero and Hopke 2009; Paatero 1999;
Belis et al. 2013) and references therein.

Source apportionment studies conducted in Delhi by
Khillare and Sarkar (2012) and Pathak et al. (2013) revealed
3 major sources, i.e., crustal, vehicular emissions (VE), and
industrial emissions (IE) of heavy metal pollution. Srivastava
and Jain (2007) and Srivastava et al. (2008) reported soil dust
(SD) and VE as 2 major sources of PM10 in Delhi, contribut-
ing more than 70% to PM10 concentration. The emission in-
ventory prepared by NEERI (2010) also reported that SD, VE,
and IE were the dominant sources of PM10. Behera et al.
(2011) built up emission inventory for Kanpur region for
coarser particulates and reported that industries (25%), traffic
(20%), fossil fuel combustion (19%), and road dust re-
suspension (15%) were the major sources. Nagar et al.
(2017) and Jaiprakash et al. (2017) reported that VE, biomass
burning (BB), and SD were the dominant sources of fine PM
in Delhi. Gianini et al. (2012) and Dongarra et al. (2010)
reported that the vehicular emissions are the major source of
PM10, where VE contributed 30% to PM10 mass in Bern,
Switzerland (Gianini et al. 2012), and ~ 50% in Palermo,
Italy (Dongarra et al. 2010), whereas Titos et al. (2012) esti-
mated the major contribution of mineral matter (43%) to PM10

in Granada, Spain. Moreno et al. (2006) also estimated that the
crustal segments solely contributed 30% to PM10 in
Puertollano, Spain. Researchers have reported varying results
of the sources and their contribution to PM even over the same
locations. Since different receptor models rely on different
statistical procedures and constraints, it produces varying re-
sults. Therefore, applying them together on the same data sets
would give the scope of comparing their results, which further

helps in explicit identification of the significant sources. The
detailed description of the receptor models along with their
similarities and differences can be found in Belis et al. (2013).
A similar study on source apportionment of PM10 using three
multivariate receptor models (PCA-APCS, UNMIX, and
PMF) was conducted by Callén et al. (2009) in Zaragoza,
Spain. In the study, they focused on the comparison of differ-
ent models in order to determine which was more adequate for
the apportionment.

The present work is a subsequent part (part II) of the previ-
ous work done and reference therein (Jain et al. 2020). The first
part dealt with the comprehensive description of PM2.5 and
PM10 measurements, their chemical characterization, and sea-
sonal variations coupled with the meteorological parameters
whereas the present study encompasses the application of three
different receptor models (PCA-APCS, UNMIX, and PMF) on
the seasonally allocated data sets of PM2.5 and PM10 and the
comparative analysis of these models’ results and perfor-
mances. It determines the seasonal variability in source com-
position and contribution to both fine and coarse fractions of
PM over Delhi, India, along with the analysis of the transport
pathways of air mass parcels from potential source regions to
the receptor site during different seasons via back-trajectory
analysis. The definitive objective of this study is to confine
the gaps in the understanding of seasonal variations of poten-
tial sources. The novelty of the study lies in implementing the
three different receptor models on the seasonally segregated
data set to obtain the mutually validated outputs, which ulti-
mately aids in explicit quantification of the contribution of
characteristic sources of different seasons. The implication of
the application of the three different receptormodels on 4-year-
long data set of PM2.5 and PM10 provides a scope to explore
more about the model’s constraints and limitations along with
the possibility to scrutinize the degree of acquiescence between
them. The present study aids in enriching the scientific auxil-
iary of policymakers and stakeholders and help them in under-
standing the attributes of PM2.5 and PM10 and their dominant
source regions along with the effective strategies to be present-
ed to the policymakers to devise laws that can be formulated.
The study may also help in establishing as well as updating
inventories of PM2.5 and PM10 along with reducing uncer-
tainties associated with climate models. A well-defined objec-
tive of this research will be to upgrade emanation control strat-
egies, enhance general well-being, and improve the overall
quality of ambient air over the region.

Methodology

Sampling

Sampling of PM2.5 and PM10 (350 samples of PM2.5 and
PM10 each) were carried out periodically from January 2013
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to December 2016 at an urban site of Delhi, India. The sam-
pling station is located inside the institutional campus of
CSIR-National Physical Laboratory, New Delhi (28° 38′ N,
77° 10′ E), at 216 m above mean sea level (amsl) (Fig. S1, in
supplementary information). The simultaneous sampling of
PM2.5 and PM10 were carried out (at least twice in a week)
on pre-combusted quartz microfiber filters at a height of 10 m
above ground level (AGL). Further details on samplers and
sampling procedures can be found in our previous publication
(Jain et al. 2020). To estimate the seasonal variations of dif-
ferent sources of fine and coarse mode PM, a year was divided
into four different seasons as per the India Meteorological
Department (IMD), i.e., winter (January–February), summer
or pre-monsoon (March–May), monsoon (June–September),
and post-monsoon (October–December).

Analytical procedures

Analytical procedures used for chemical characterization of
both PM2.5 and PM10 have been summarized in Fig. S2 (in
supplementary information). The complete details of the ana-
lytical procedure used in this study have already been
discussed in part I of the study (Jain et al. 2020); hence, brief
information has been added here. A total of 700 samples of
PM (n = 350 for PM2.5 and PM10 each) were collected and
characterized for their chemical components. Initially, a non-
destructive method was employed for the analysis of major
and trace elements (Al, Ti, Fe, Cr, Mn, Zn, Cu, As, Pb, Br, and
Mn) using wavelength-dispersive X-ray fluorescence (ZSX
Primus, Rigaku, Japan). The OC and EC analyses were car-
ried out using OC/EC carbon analyzer (DRI 2001A,
Atmoslytic Inc., Calabasas, CA) following US EPA’s
IMPROVE-A Protocol. The estimation of water-soluble inor-
ganic species/components (Na+, NH4

+, K+, Ca2+, Mg2+, F−,
Cl−, NO3

−, and SO4
2−) in PM2.5 and PM10 samples were car-

ried out by extracting filters and analyzed it using ion chro-
matograph (model: DIONEX-ICS-3000, Sunnyvale, CA,
USA). The complete details regarding analytical procedures,
underlying principles, calibration procedures, standards used,
and repeatability are available in our previous publications
and reference therein (Jain et al. 2017, 2020).

The same analytical procedure was used to analyze the
field sample blank filters as of for exposed filters. Average
blank filter concentration (background) was subtracted from
all the exposed filter data to get the final concentration. All the
samples were analyzed three times to calculate the analytical
error/repeatability error. The repeatability error in analysis
of trace elements, OC-EC, and WSICs were estimated to be
~ 5–10%, 3–5%, and 3–7%, respectively. The method detec-
tion limits (MDL) for all the instruments were calculated as
three times the standard deviation of 10 repetitions of blank
filter analysis. MDL value determined the quality of the data/
measurements that will be useful to understand the quality of

the data and recapitulated in Table S1 (in supplementary
information).

Data analyses

The allocation of sources of PM2.5 and PM10 was done on a
seasonal basis using three different receptor models, i.e.,
PCA-APCS, UNMIX 6.0, and PMF (version 5.0). Since,
the several studies have been published detailing the theoret-
ical aspects, algorithms, and working procedures of these
models (Thurston and Spengler 1985; Paatero et al. 2013;
Henry 2003; Viana et al. 2008; Pant and Harrison 2012;
Belis et al. 2013; Sharma et al. 2016b; Jain et al. 2017,
2018, 2019) and references therein, hence, the significant de-
tails and parameters applied in the present study are explicated
below.

PCA-APCS

PCA-APCS was employed on the analyzed and seasonally
apportioned data sets of PM2.5 and PM10 to identify charac-
teristic sources present during different seasons. PCA-APCS
model was performed using the software package SPSS sta-
tistics version 22.0. All the components were characterized
and transformed before statistical evaluation into a standard-
ized dimensionless form. Once the results were achieved, they
were assessed only for PCs with eigenvalues > 1 and reviewed
according to Kaiser’s criteria. The value of Kaiser-Meyer-
Olkin (KMO) ranges from 0 to 1, where value > 0.6 is accept-
able in terms of data suitability for factor analysis (Li et al.
2004). Varimax rotation accompanied by orthogonal transfor-
mation has been applied in the present study. Chemical vari-
able with > 0.5 factor loadings was exerted for source
distribution.

UNMIX

In the present study, USEPA UNMIX 6.0 version was
employed, which was freely available at EPA website
(http://www.epa.gov/heasd/products/unmix/unmix.html). A
detailed explanation of its algorithms and theoretical
prospects is available in Song et al. (2006) and Jain et al.
(2017). The best-fit species were selected through the inbuilt
function of the model “select initial species” and thereafter
using the second function called “suggesting additional spe-
cies” to incorporate suitable components for analysis. The
present study also incorporated the model’s suggestion on
species exclusion and diagnostic indicators of solutions that
will be discussed in the section “Source apportionment.”
UNMIX was applied to the seasonal data set of PM2.5 and
PM10 to reveal the possible variations of sources with seasons.
PM2.5 and PM10 were considered as the total mass in their
respective runs.
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PMF

Seasonal variation in sources of PM2.5 and PM10 was investi-
gated by running the PMF 5.0 model for all the seasons (sum-
mer, monsoon, winter, and post-monsoon). Since the detailed
description of the PMF model and its working procedure had
already been explained in the first part (part I) of this study
(Jain et al. 2020), hence, only the obligatory information is
given here. The associated uncertainties with the data of ana-
lyzed chemical species were estimated by the PMF model
(EPA PMF 5.0 user manual). In the present analysis, all the
species of PM2.5 and PM10 were found to be fit by the model.
An eight-factor solution was obtained for both PM2.5 and
PM10 from the base run of the PMF model. Q robust and Q
true values were observed to be in good agreement that indi-
cated the data’s stability and model’s ability to fit all the spe-
cies. Extra modelling uncertainties were also added to the data
sets of both fine and coarse fractions of PM, which is de-
scribed in the section “Source apportionment.” A significant
correlation (R2) was observed between the modelled and mea-
sured concentrations of PM2.5 and PM10, signifying the results
obtained were well reconstructed. R2 observed for PM2.5 was
0.86 and 0.78 was obtained for PM10. Displacement (DISP)
and bootstrap (BS) tools were applied to estimate the uncer-
tainties associated with output factor profiles. The results of
BS and DISP analysis for different seasons for both PM2.5 and
PM10 are summarized in Tables S16–S23 (in supplementary
information). The BS analysis (100 runs) was carried out with
all the data sets of PM2.5 and PM10 and < 10% unmapped
cases were observed that suggested the PMF solutions were
well mapped. The DISP analysis was also conducted for all
the data sets and reliable results were observed, i.e., < 5%
swap of factor profile was obtained.

Results and discussions

Seasonal variability of chemical constituents of PM2.5

and PM10

The four-year average concentrations of PM2.5 and PM10 were
131 ± 79 μg m−3 and 238 ± 106 μg m−3, respectively. The
temporal variation of PM2.5 and PM10 has been shown in Fig.
S3 (in supplementary information). The mean and seasonal
concentrations of all the analyzed chemical species/
components of PM2.5 and PM10 are given in Table S2 (in
supplementary information) and the Wilcoxon-Mann-
Whitney test was applied to identify the seasonal
differences along with differentiating the nonsignificant and
significant species and the results are recapitulated in
Tables S3–S4 (in supplementary information) for PM2.5 and
PM10, respectively. The highest concentrations of PM2.5 and
PM10 were observed in January (417 μg m

−3 and 537 μg m−3,

respectively) whereas, the minimum concentrations of the fine
and coarse fractions of PM were recorded in September
(17 μg m−3 and 33 μg m−3, respectively). The highest
seasonal concentrations of both PM2.5 (186 ± 90 μg m−3)
and PM10 (320 ± 97 μg m−3) were observed during the post-
monsoon season (October–December) and the lowest concen-
trations of both PM2.5 (69 ± 28 μg m−3) and PM10 (152 ±
75 μg m−3) were found during the monsoon season (June–
September). The stable atmosphere, lower boundary layer
height, frequent fog and haze events, and elevated biomass
and agricultural burning activities (prominently in Punjab
and Haryana states during October and November) during
cold seasons are the major reasons for the increased concen-
tration of PM and aerosol loading over a region (Ravindra
et al. 2019), whereas atmospheric particles were scavenged
off by the rainfalls and strong winds during the monsoon
season (Jain et al. 2017). Other studies conducted over Delhi
also reported the similar results with the maximum concentra-
tion of PM during cold seasons and minimum in monsoon
season (Kandlikar 2007; Mandal et al. 2014; Gopalaswami
2016; Sharma et al. 2016b; Sharma and Dikshit 2016; Jain
et al. 2017; Gupta et al. 2018; Sharma et al. 2018b; Bannoo
et al. 2020; Agarwal et al. 2020). More than 80% of the mea-
sured data of PM2.5 and PM10 were observed to be exceeding
the 24-h averaged National Ambient Air Quality Standards
(NAAQS) defined by Central Pollution Control Board
(CPCB) of India (PM2.5, 60 μg m−3; PM10, 100 μg m−3,
averaged over 24 h), which is in accordance with other studies
on PM over Delhi (Perrino et al. 2011; Tiwari et al. 2013;
Mandal et al. 2014; Sharma et al. 2014; Tiwari et al. 2013;
Trivedi et al. 2014; Panda et al. 2016; Sharma et al. 2016a, b;
Gupta et al. 2018; Jain et al. 2017, 2018; Sharma et al. 2018b;
Gadi et al. 2019; Jain et al. 2019; Banoo et al. 2020).

The average concentrations of OC and EC of PM2.5

was found to range from 2.7 to 69.1 μg m−3 (average ± stan-
dard deviation, 15.7 ± 12.7 μg m−3) and 0.8 to 35.3 μg m−3

( 7 . 3 1 ± 6 . 1 7 μ g m − 3 ) , r e s p e c t i v e l y , w h i l e
the average concentrations of OC and EC of PM10 were ob-
served to range from 4.6 to 71.9 μg m−3 (26.6 ± 14.7 μg m−3)
and 1.1 to 35.6 μg m−3 (9 .31 ± 6.56 μg m−3) ,
respectively during the entire sampling period. The tempo-
ral variation of OC and EC of PM2.5 and PM10 has been
shown in Fig. S4 (supplementary information). Total
carbononaceous species/aerosol (TCA=(1.6*OC) + EC)
(Sharma et al. 2018a, b) were observed to contribute to ~
2 8% a n d 2 4% t o t h e t o t a l PM 2 . 5 a n d PM 1 0

mass concentration, respectively. Similar studies carried
out in Delhi also reported the high contribution (%) of car-
bonaceous aerosols to PM (Mandal et al. 2014; Sharma
et al. 2014; Bisht et al. 2015; Gupta et al. 2018; Sharma
et al. 2018a, b; Gadi et al. 2019). The seasonal trend of OC
and EC was observed in the following manner: post-
monsoon season > winter season > summer season >
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monsoon seasons, and summarized in Table S2 (in supple-
mentary information). It is to be noted that besides the sta-
ble meteorological conditions during cold seasons, the ele-
vated crop residue burning in the states of Punjab and
Haryana emits the large number of particulates that further
travel towards Delhi region and causes the loading of car-
bonaceous aerosols during the post-monsoon season over
the receptor site (Gupta et al. 2018). The total four-year
average and seasonal concentrations of WSICs are summa-
rized in Table S2 (supplementary information). Among an-
alyzedWSICs, the dominant anionic and cationic species of
PM2.5 and PM10 were SO4

2−, NO3
−, Cl− and NH4

+, K+,
respectively. The four-year average concentrations of
SO4

2− of PM2.5 and PM10 were 13.8 ± 8.7 μg m−3 and
20.1 ± 16.1 μg m−3, respectively. The average concentra-
tion of NO3

− was observed to be 11.6 ± 11.6 μg m−3 in
PM2.5 and 17.2 ± 17.9 μg m−3 in PM10. Both SO4

2− and
NO3

− showed significant seasonal variability.
The average quantification of chemical components of

PM2.5 was 26.8% secondary inorganic aerosols (SIA)
(NH4

+, NO3
−, and SO4

2−), 13.9% sum of other WSICs,
11.9% OC, 5.5% EC, 6.6% crustal elements, and 1.2% trace
metals. Similarly in PM10, 21.2% SIA, 14.1% crustal ele-
ments, 11.2% OC, 10.7% sum of other WSICs, 3.9% EC,
and 1.7% trace metals were observed. The distribution of
these chemical components in PM2.5 and PM10 mass has been
shown in Fig. S5 (in supplementary information). It is to be
noted that the metals constitute a very small part of PM,
and they have deleterious health effects on humans, e.g., Pb
causes anaemia, fatigue, kidney, and brain damage in humans
(Assi et al. 2016). In the present study, the measured concen-
tration of Pb in PM10 was found to be exceeding both USEPA
standards (0.15 μg m−3, annually) and NAAQS given by
CPCB, India (0.5 μg m−3, annually) (NAAQS 2009). The
highest concentration was observed in the winter season
(0.78 μg m−3) while the lowest in monsoon season (0.29 μg
m−3). However, the Pb concentration in PM2.5 lies within the
limit set by NAAQS, India, but exceeds USEPA standards for
ambient air quality, with maximum concentration in the win-
ter season (0.41 μg m−3) and minimum in monsoon season
(0.20 μg m−3).

Source apportionment

The present study encompasses the results (source profiles and
their seasonal contributions) of PCA-APCS and UNMIX.
These results were compared with the result given by the
PMF model, reported previously (Jain et al. 2020). A summa-
ry of source apportionment of PM2.5 and PM10 resolved by
these three models has been given in Tables S5–S14 (in sup-
plementary information). In total, 22 species (OC, EC, Al, Ti,
Fe, Cr, Mn, Zn, As, Pb, Br, Mn, Cu, Na+, K+, NH4

+, Ca2+,
Mg2+, F−, Cl−, NO3

−, and SO4
2−) of PM2.5 and PM10 were

incorporated into the model for factor analysis. The three re-
ceptor models (PCA-APCS, UNMIX, and PMF) were run
individually on the data sets of PM2.5 and PM10 for winter,
summer, monsoon, and post-monsoon seasons.

Source identification and quantification by PCA-APCS

The factor profiles of all the sources of PM2.5 and PM10 for
different seasons are given in Tables S5–S14 (in supplemen-
tary information). The comparative analysis of the contribu-
tion of different sources to fine and coarse fractions of PM
during different seasons is shown in Fig. 1. The estimated
value of KMO and Barlett’s test ensures fitting of the data of
PM2.5 were 0.71, 0.73, 0.71, and 0.70 for winter, summer,
monsoon, and post-monsoon seasons, respectively, while
0.73, 0.79, 0.75, and 0.75 were observed for winter, summer,
monsoon, and post-monsoon seasons’ data sets, respectively,
for PM10. Hence, all the estimated values of KMO and
Barlett’s test were > 0.6, suggesting the suitability of the data
for factor analysis. PCA-APCS evaluated 6-source solution
for PM2.5 for all the seasons except for post-monsoon season
where it estimated 7-source solution. In the post-monsoon
season, one source was unidentified due to the unavailability
of any dominant tracer species. For PM10, PCA-APCS analy-
sis estimated 5-source solution for summer, winter, and post-
monsoon seasons and 6-source solution in monsoon season.
Mixed sources were also obtained for both fractions of PM.

Fig. 1 Seasonal variability in source contribution to a) PM2.5 and b)
PM10 as determined by PCA-APCS over Delhi during 2013–2016

4664 Environ Sci Pollut Res  (2021) 28:4660–4675



Factor 1 The first factor of both PM2.5 and PM10 represents the
source of secondary aerosols (SA) due to the high loading of
NO3

−, SO4
2−, and NH4

+. The NH4NO3 and (NH4)2SO4 are
formed from their gaseous precursors NO3

− and SO4
2−, re-

spectively (Seinfeld and Pandis 2016; Saraswati et al. 2019;
Kotnala et al. 2020). In PM2.5, SA was maximum during the
winter season (19.2%) followed by other seasons that have
more or less similar contributions. Similarly, to PM10, the
contribution of SA during all the seasons did not vary much.
The most probable reason could be that secondary nitrate (SN)
is thermally unstable during warm seasons whereas strong
solar radiations, high temperature, and high relative humidity
during warm seasons favor the formation of secondary sulfate
(SS). Contrarily, low temperature favors the formation of SN
more than SS (Querol et al. 2008; Goel et al. 2018a; Saraswati
et al. 2019). Since SA is composed of both SN and SS, hence,
it did not show much seasonal variations. In total, PCA esti-
mated a higher contribution of SA in PM10 (21%) as com-
pared to PM2.5 (18%) (Fig. S7, in supplementary information).

Factor 2 The second factor represents the important source of
carbonaceous aerosols, i.e., OC and EC, which are globally
considered as tracers for vehicular emissions (VE) (Sharma
et al. 2016b; ChooChuay et al. 2020a). Along with OC and
EC, other elements were also present in significant (Mn and
Zn) and small amounts (Al and Pb), indicative of motor vehi-
cles and road traffic emissions (Begum et al. 2011). Zn and
Mn are markers of brake and tire wear as well as used in fuel
additives (Kothai et al. 2008; Pant and Harrison 2012). The
presence of Al can be indicative of emanation fromwearing of
brake lining and pistons (Jain et al. 2018). Similar studies
conducted over Delhi also reported VE to be a major source
of PM (Mandal et al. 2014; Sharma et al. 2016a, b, 2017; Jain
et al. 2017, 2018, 2019; Gupta et al. 2018). PCA-APCS esti-
mated almost similar annual contribution of VE to PM2.5

(21.0%) and PM10 (20.6%) (Fig. S2, in supplementary
information). The seasonal differences in the contribution of
VE were not very prominent as it persists most of the year,
which is also reported by Jaiprakash et al. (2017). The contri-
bution of VE to PM2.5 during post-monsoon, summer, winter,
andmonsoon seasons were 21.8%, 20.6%, 20.4%, and 20.4%,
respectively, whereas to PM10, the maximum contribution of
VE was during the winter season (21.0%) followed by sum-
mer (20.3%), post-monsoon (19.3%), and monsoon (18.5%)
seasons.

Factor 3 The third factor is dominated by the crustal elements
like Al, Ti, Fe, Mn, Ca2+, and Mg2+ that mark the factor as
soil/road dust (SD) source (Balachandran et al. 2000). The
crustal elements signify the major fraction of soil dust and
re-suspended road dust and largely contribute to coarser par-
ticles (Khillare et al. 2004), which was further supported by
enrichment factor (EF) analysis (Sharma et al. 2020). Ti, Fe,

Mn, Ca, and Mg in both coarse and fine fractions were ob-
served to have low EFs for all the seasons and thus concluded
to have arrived from crustal/soil dust sources (Fig. S6, in
supplementary information) (Sharma et al. 2020). The de-
tailed description of the analysis of EFs is given in
Appendix-1 (in supplementary information). The consider-
able presence of OC, EC, and some other metals like Cu, Cr,
Mn, and Zn in this factor indicated the combined emanations
from road dust (Suryawanshi et al. 2016). However, the re-
sults obtained from PCA-APCS analysis of the total data set
did not show much difference in the contribution of SD to
PM2 . 5 (16 .3%) and PM10 (16 .5%) (F ig . S7 , in
supplementary information). Regarding seasonal variations,
the results showed a striking difference between summer
and other seasons. The maximum contribution of SD to
PM2.5 was during summer (21.9%) season while the contribu-
tions in monsoon, winter, and post-monsoon seasons were
18.9%, 17.1%, and 16.2%, respectively. Similarly to PM10,
the highest contribution of SD was in the summer season
(23.0%) followed by other seasons. The maximum contribu-
tion of SD was observed during the summer season accredited
to the frequent and intense dust storms (traversing from the
Thar Desert in Rajasthan) that occur in the Delhi region par-
ticularly in the summer season (Singh et al. 2016). The back-
trajectory analysis also confirmed the influx of air mass parcel
from arid regions of Rajasthan during the summer season (Fig.
4b).

Factor 4 The fourth factor is identified as sodium and magne-
sium salt (SMS) source, due to the presence of the high con-
centrations of Na+ andMg2+. The species like Na+, Mg2+, and
Cl− are used as global tracers for marine aerosols and sea salt
(Kumar et al. 2001; Pant and Harrison 2012). The sampling
location is not surrounded by any sea or coastal region and
emanations from this source could be ambiguous as sources
like sea salt, rivers, soil/road dust, and other waterways could
contribute together; therefore, referring this factor as SMS
instead of sea salt was more appropriate (Jain et al. 2019). In
the monsoon season, SMS source contributed ~ 8% to PM10,
whereas for all other seasons, the model evaluated mixed-type
source that will be discussed in the fifth factor. For PM2.5,
PCA-APCS analysis apportioned this source in all the sea-
sons, being dominant in monsoon season (9.2%) which is
probably due to the intrusion of sodium and magnesium salt-
laden aerosols by heavy monsoonal rainfall along with winds
flowing from the Arabian Sea and Bay of Bengal (Jain et al.
2017, 2019) to the sampling region (Fig. 4c).

Factor 5 The fifth factor is identified as industrial emission
(IE) source due to the presence of the high concentration of
mainly Cr, Cu, and As and lower concentrations of elements
like Zn, Br, Mn, and Pb. These elements could be originated
from various small- to medium-scale industries, metal
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processing industries, industrial effluents, and coal-fired ther-
mal power plants (Sharma et al. 2016a; Jain et al. 2017). PCA-
APCS could not apportion this source type separately for all
seasons in PM10 and resulted in mixed-type source (IE +
SMS) due to incursion of marker species of SMS source like
Na+ and Mg2+ except in monsoon season where IE contribut-
ed ~ 15% to PM10. The annual contribution of IE + SMS to
PM10 was 18.4% and seasonal contribution was maximum in
post-monsoon season (19.4%). For PM2.5, PCA-APCS anal-
ysis differentiated this source in all the seasons, being highest
in the winter season (13.2%) due to higher emission rates and
stable meteorological conditions during the cold seasons.

Factor 6 The dominant presence of K+, Pb, Br, and Cl−marked
this factor to be of mixed type, including emissions from bio-
mass burning (BB), wood burning, fossil fuel combustion
(FFC), and coal combustion. Biomass comprises cow dung,
dry leaves, fuel wood, residential and agricultural wastes, and
post-harvest residue (Almeida et al. 2006). The significant
amount of Cl− presented in this factor revealed the intrusion
from sources like coal combustion (CC), and wood burning
(Pant and Harrison 2012). Presence of Br along with Cl− sig-
nified CC emanations (Sharma et al. 2016b). Furthermore, the
occurrence of OC and EC along with K+ indicated the FFC
emissions (Cesari et al. 2018). The significant presence of Pb
in this factor (particularly in cold seasons) corroborated that
BB (including solid waste burning) and FFC activities emit
lead particles which are in agreement with other studies con-
ducted by Koppmann et al. (2005), Xu et al. (2012), and Chen
et al. (2017). BB + FFC annually contributed 23% and 21% to
fine and coarse mode PM, respectively. It is to be noted that
BB+ FFC substantially contributed to PM2.5 than PM10which
is consistent with the fact that combusted particles contribute
largely to fine PM (ChooChuay et al. 2020b; Callén et al.
2009). Seasonal contribution of BB + FFC was maximum
during winter (23.6% to PM2.5 and 24.5% to PM10) followed
by post-monsoon (22.5% to PM2.5 and 22.2% to PM10), sum-
mer (21.9% to PM2.5 and 22.1% to PM10), and monsoon
(19.7% to PM2.5 and 21.0% to PM10) seasons. The elevated
biomass and agricultural burning, domestic heating activities,
and stable meteorological conditions during winters are the
major factors for the high BB and FFC emanations (Sharma
et al. 2020). During winter and post-monsoon seasons, the
majority of the trajectories were observed to be coming from
Punjab and Haryana probably carrying aerosols emanated
from the burning of agricultural residues (Fig. 4a, d).

Source identification and quantification by UNMIX

The comparative analysis of the contribution of different
sources to PM2.5 and PM10 during different seasons is shown
in Fig. 2. Diagnostic indicators of the solution (R2 and S/N
ratio) were found to agree with the model’s recommendations

in all the seasons for both PM2.5 and PM10. Each run was
made to re-sample the data 100 times before providing any
solution. As per the model’s function of “suggested exclu-
sion,” fluoride (F−) was rejected from further processing of
the data in all the seasons for both PM2.5 and PM10.
Furthermore, the model rejected S in monsoon season and
Mn in post-monsoon season from any further processing of
the PM2.5 data. For annual source apportionment analysis,
model discarded Mn for PM10 while Na+, Mg2+, Br, and Fe
for PM2.5 from further calculations. It is recommended in the
UNMIX 6.0 fundamentals and user guide that species with
more than 50% of the variance due to error or specific variance
(SV) be considered for exclusion from further UNMIX
modelling. UNMIX analysis estimated 4-factor solution for
PM2.5 in winter, monsoon, and post-monsoon seasons while
5-factor solution in summer season including mixed-type
sources in all. And for PM10, the model evaluated 5-factor
solution in winter, summer, and monsoon seasons whereas
post-monsoon season has 4-factor solution including mixed-
type sources in all.

Factor 1 Factor 1 of both fine and coarse fractions of PM is
characterized by a high share of NO3

−, SO4
2−, and NH4

+,
which makes it a mixture of SN and SS sources. SA

Fig. 2 Seasonal variability in source contribution to a) PM2.5 and b)
PM10 as determined by UNMIX over Delhi during 2013–2016
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contributed higher in PM2.5 (23%) than PM10 (21%) annually.
Seasonally, UNMIX resulted in a higher contribution of SA in
monsoon season to both PM2.5 and PM10, which could be
accredited to the fact that high humid conditions favor new
particle formation through the transformation of NO2 to NO3

−

and SO2 to SO4
2− during monsoon season (Saraswati et al.

2019) and also act as cloud condensation nuclei (Goel et al.
2018b).

Factor 2 The high percentage shares of OC and EC along with
the presence of a significant amount of Mn, Al, Zn, and Pb
marked this factor as VE. In the total data set analysis, the
model gave an elevated percent contribution of VE to PM2.5

(23.2%) as compared to PM10 (19.8%). It is to be noted that
VE contributed higher in finer than coarser PM. The
higher contribution of VE to PM2.5 was during the winter
season (24.6%) followed by summer (24.3%), post-monsoon
(22.2%), and monsoon (20.5%) seasons, whereas to PM10, the
contribution of VE during post-monsoon, summer, winter,
and monsoon seasons was 23.1%, 21.5%, 21.0%, and
20.3%, respectively.

Factor 3 It is represented by the dominant presence of crustal
elements like Al, Ti, Fe, Mn, Ca2+, and Mg2+, which mark the
factor as SD. The results obtained from UNMIX analysis of
the annual data set showed a slightly higher contribution of
SD to PM10 (19.2%) than PM2.5 (18.7%) (Fig. S6, in
supplementary information). Regarding seasonal variations,
the results showed a striking difference between summer
and other seasons. The maximum contribution of SD to
PM10 was during summer (22.7%) followed by monsoon
(18.9%) and winter (15.4%) seasons; however, in post-
monsoon season, SD was found to be mixed with IE. SD
contributed ~ 25% to PM2.5 during the summer season while
for all other seasons, UNMIX resolved mixed-type source
(SD + IE), combining species like Cu, As, Zn, Cr, and Mn
with Al, Ti, Fe, Mn, Ca2+, and Mg2+. SD + IE contributed
19.1%, 18.7%, and 15.8% to PM2.5 in post-monsoon, winter,
and monsoon seasons, respectively.

Factor 4 This factor is identified as IE due to the high
concentration of mainly Cu and As. Other heavy metals
like Cr, Zn, Br, Pb, and Mn were also present in this
factor in lower but significant concentrations. UNMIX
model estimated the 8.7%, 8.4%, and 6.7% contribution
of IE to PM10 in winter, monsoon, and summer seasons,
respectively, while in post-monsoon season, UNMIX re-
sulted in a mixed source (SD + IE), contributed ~ 27%
to PM10. The contribution of IE to PM2.5 in the summer
season was estimated to be 9%. The source apportion-
ment of annual data set of PM2.5 and PM10 estimated
10.3% and 5.1% contribution of IE to PM2.5 and PM10,
respectively.

Factor 5 This factor is characterized by tracers of BB and FFC
like K+, Cl−, Pb, and Br along with markers of SMS, i.e., Na+

and Mg2+, hence called as mixed-type (BB + FFC + SMS)
source. Also, OC and EC were present in significant amounts
in association with K+ and Cl−, indicating the FFC emanations
(Jain et al. 2019). The seasonal contribution of BB + FFC +
SMS to PM10 was observed to be highest in the winter season
(35.7%) whereas to PM2.5, it was higher during monsoon
season (40.8%). However, the mixed type of sources could
not correctly estimate the seasonal contributions as different
sources show different contributions during different seasons.
For example, SMS shows a higher contribution during the
monsoon season (Sharma et al. 2016a) while BB shows a
higher contribution during the winter season (Jain et al.
2017); therefore, the percent contributions got mixed up in
the mixed type of sources.

Source identification and quantification by PMF

Seasonal source apportionment of both fine and coarse mode
PM using the PMF model has been reported in detail in the
first part of this study (Jain et al. 2020); here, the results of
PMF are being briefed for the comparative purpose. The com-
parative analysis of sources of PM2.5 and PM10 with their
contribution in percentage is shown in Fig. 3 and contributions
to mass concentration are summarized in Table S15 (in sup-
plementary information). The annual average contributions

Fig. 3 Seasonal variability in source contribution to a) PM2.5 and b)
PM10 as determined by PMF over Delhi during 2013–2016
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for PM2.5 and PM10 are analogized in Fig. S7 (in supplemen-
tary information). PMF estimated eight-factor solutions for
both PM2.5 and PM10 in all the seasons.

Factor 1 The first factor of both fine and coarse fractions of
PM was dominated by NO3

− and NH4
+, thus inferred as SN.

The contribution of SN to both PM2.5 and PM10 followed the
same seasonal trend. The contribution of SN to PM2.5 was
13.2% > 12.8% > 10.2% > 8.4% while to PM10 was 10.5%
> 9.3% > 8.9% > 8.3% during post-monsoon, winter, mon-
soon, and summer seasons, respectively. Annualy, SN con-
tributed to 11.7% to PM2.5 and 11.8% to PM10.

Factor 2 The second factor of PM2.5 and PM10 was inferred as
SS due to the dominant presence of SO4

2−. The contribution of
SS to both PM2.5 and PM10 was highest during the summer
season, i.e., 12.9% to PM2.5 and 15.5% to PM10, while min-
imum during the winter season, i.e., 6.4% to PM2.5 and 7.4%
to PM10.

Factor 3 The presence of a high concentration of key markers
like OC, EC, Zn, Mn, and Al inferred the source of VE. VE
contributed annually ~ 16% to PM2.5 and 21% to PM10. The
seasonal variations in the contribution of VE were not evident
since it persists most of the year. The contribution of VE to
PM2.5 during post-monsoon, winter, summer, and monsoon
seasons was 20.7%, 20.3%, 18.8%, and 17.1%, respectively.
The highest contribution of VE to PM10 was during the winter
season (21.4%) while lowest during the summer season
(18%).

Factor 4 The profusion of markers like K+, Pb, and the con-
siderable presence of Cl-, Br, OC, and EC marked this factor
to be of BB source. Furthermore, S was also present in a small
amount in some seasons indicating both BB and CC emissions
(Andreae 1985). The annual contribution of BB to fine and
coarse mode PM was 23% and 19%, respectively (Fig. S7, in
supplementary information). It was observed that BB contrib-
uted more to PM2.5 than PM10. BB source contributed highest
in the winter season while lowest in the summer season.

Factor 5 The abundance of crustal elements like Al, Fe, Ti,
Mn, Ca, and Mg marked this factor as the source of SD. PMF
analysis estimated that SD contributed annually 13% to PM2.5

and 17% to PM10, which is consistent with the fact that SD
contributes largely to coarser particles. The maximum contri-
bution of SD to PM2.5 and PM10 was during summer and
minimum in the post-monsoon season.

Factor 6 The sixth factor is represented as FFC due to the
presence of a high concentration of Cl−, F−, Cr, and Br.
Coal-fired power plants and oil combustion are the significant
sources of Cr in the atmosphere besides IE (Fishbein 1981;

Galbreath et al. 1998; Cheng et al. 2009). PMF analysis esti-
mated the annual contribution of FFC to be of 10% and 7% to
PM2.5 and PM10, respectively. It was observed that FFC con-
tributed more in fine PM than the coarser one (Saraswati et al.
2019). The highest contribution of FFC was in the post-
monsoon (12% to PM2.5 and 9.7% to PM10) season.

Factor 7 It is inferred as the source of SMS because of the
presence of Na+ and Mg2+ in high concentration. The annual
contribution of SMS to PM2.5 and PM10 was 6% and 7%,
respectively. The highest contribution of SMS to both PM2.5

and PM10 was in the monsoon season, i.e., 10.4% and 8.9%,
respectively, while the lowest during the winter season, i.e.,
5.1% to PM2.5 and 5.8% to PM10.

Factor 8Due to the presence of a high concentration of As and
Cu and lower concentration of Zn, Pb, and Cr, this factor is
inferred as IE. PMF estimated the annual contribution of IE
was 10.3% to PM2.5 and 9.9% to PM10. The contribution of IE
was maximum during the post-monsoon season, where IE
contributed 9.8% to PM2.5 and 10.7% to PM10.

The results of the uncertainty (BS and DISP) tools as pro-
vided by PMF 5.0 are documented in Tables S16–S23 (in
supplementary information) for both PM2.5 and PM10 for dif-
ferent seasons. For PM2.5, sources like IE and FFC have high
uncertainties during winter, summer, and post-monsoon sea-
sons while BB and IE sources show high uncertainty during
monsoon season. However, the rotational tools indicate stable
results for SN, SS, VE, and BB sources during winter, sum-
mer, and post-monsoon seasons whereas duringmonsoon sea-
son, SN, SS, VE, and SMS sources show stable results.
Uncertainty tools suggested steady results for SN, SS, VE,
BB, and SD sources during winter, summer, and post-
monsoon seasons for PM10 while SN, VE, BB, SD, and
SMS sources show higher stability during monsoon season.

Source comparison

The results of PCA-APCS and UNMIX were compared to the
PMF output based on the identified source numbers, source
type, and the contribution of each source to PM2.5 and PM10

for different seasons (Table S24, in supplementary
information). Seasonal variations of identified sources using
these receptor models were also compared. The seasonal
source apportionment study helps in quantifying the contribu-
tion of potential sources of PM in different seasons as well as
season-specific sources can also be identified but for doing so,
the large data set is required for each season to carry out
the source apportionment analysis (Pant and Harrison 2012).

A total of seven common sources were identified by all the
three models, be it an individual (single)-type or mixed-type
source. For annual source apportionment analysis (using 4-
year data sets), two common sources (single source) were
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identified by all the three models for both PM2.5 and PM10:
soil dust and vehicular emission. UNMIX resolved the
overestimated contribution of VE to PM2.5 as compared to
PMF analysis while all the three models estimated similar
contribution of VE to PM10 (Fig. S7, in supplementary
information). PCA-APCS resolved similar contribution of
SD to both fine and coarse modes of PMwhile PMF estimated
higher contribution of SD to PM10 as compared to PM2.5,
which is in consistency with other related studies (Ho et al.
2003; Cesari et al. 2018; Banerjee et al. 2015; Sharma et al.
2016a; Jain et al. 2019). PMF evaluated 8-factor solution for
both PM2.5 and PM10. However, PCA-APCS and UNMIX
resolved 5- and 6-factor solution for PM10, respectively, and
6- and 5-factor solution for PM2.5, respectively. PMF distin-
guished SN and SS distinctly while PCA and UNMIXmodels
resolved them as SA source (combining both SN and SS).
PCA analysis of the PM10 data set resulted in a mixed-type
source of BB + FFC, probably due to their similar
tracers (Sharma et al. 2020). However, UNMIX evaluated
the BB source in individual factor while mixing the markers
of FFC with SMS source. For PM2.5, PCA identified the
sources of SMS and IE distinctly while UNMIX could not
identify SMS source at all (due to exclusion of Na+ and
Mg2+ by the model). UNMIX attributed the dominant contri-
bution of SA and VE to both PM2.5 and PM10 while PMF
analysis identified VE and BB as dominant sources.

Similar source apportionment study conducted on heavy
metals over Delhi by Khillare and Sarkar (2012) estimated
the contribution of crustal, VE, and IE to be 49–65%, 26–
31%, and 4–21%, respectively, to metal concentration. The
emission inventory of different sources of PM10 for the
Delhi region was also prepared by NEERI (2010). It was
found that PM10 was dominated by re-suspension of road dust
to the extent of 52% while IE, VE, and area sources (cooking
emissions, waste incineration, construction activities, etc.)
contributed 22%, 7%, and 19%, respectively, to PM10.
Tiwari et al. (2013) estimated a total of 4 sources of PM10

(SD, VE, SA, and sea salt) where SD and VE were the major
sources, contributing 37% and 23%, respectively, to PM10.
Patil et al. revealed some interesting results about the PM
speciation profile. They reported many other sources of
PM2.5 and PM10 over Delhi besides SD, VE, and BB like
paved and unpaved road dust, coal-fired power plants, solid
waste open burning, and kerosene generators. A similar study
was also conducted by Nagar et al. (2017), wherein, addition
to expected primary sources (VE, SD, BB) of PM2.5, the new-
ly identified sources like municipal solid waste (MSW) burn-
ing, coal, and fly ash were also reported. Similar sources of
PM2.5 and PM10 (with slightly varying contributions) over
Delhi were reported by Sharma et al. (2016b) and Jain et al.
(2017, 2018), which is consistent with the present study.
Jaiprakash et al. (2017) identified the sources of PM1.0 using
PMF over Delhi and revealed 6 major sources, i.e., SA, VE,

BB, SD, IE, and secondary chloride. SA (38.6%) and second-
ary chloride (19.4%) were found to be the principal contribu-
tors of PM1.0. Other source apportionment studies conducted
over Delhi region were with organic compounds, which also
revealed similar sources of the fine and coarse mode of PM
like VE, BB, cooking emissions, solid waste burning, biogen-
ic, and industrial emissions (Gupta et al. 2018; Gadi et al.
2019). The comparison of the contribution (in %) of major
sources of PM2.5 and PM10 reported by recent source appor-
tionment studies in Delhi is shown in Table S25 (in supple-
mentary information).

Three common sources, i.e., SA, VE, and SD, were iden-
tified by all the receptor models for both PM2.5 and PM10 in all
the seasons but with varying seasonal contributions. UNMIX
analysis overestimated the contribution of SA in monsoon
season for both fine and coarse mode PM while PCA attrib-
uted almost similar contribution of SA in all the seasons.
However, PMF differentiated SA source into its two compo-
nents, i.e., SN and SS, where SS was higher during warmer
seasons while SN was higher during colder seasons.
Regarding the traffic source, PMF output showed slight sea-
sonal variations with a high contribution in the winter season
and low in monsoon season for both sizes of PM and all three
models agreed that VE source does not show any specific
seasonality. PMF and PCA-APCS estimated the highest con-
tribution of SD to PM2.5 and PM10 in the summer season and
displayed significant seasonal trends whereas UNMIX analy-
sis resulted in mixed-type source (SD + IE) in some seasons
and thus seasonal trend could not be traced for the UNMIX
output. Fe-rich soil dust that primarily originated from
Aravalli hills of Delhi prevail over the region all year round
along with frequent dust storms that come from the Thar
Desert of Rajasthan that increase the loading of soil dust over
the region particularly in summer season (Banerjee et al. 2015;
Goel et al. 2018c, 2020). Similar studies also revealed the
predominance of crustal components (Al, Ca, Mg, and Fe)
in PM particularly in summer season majorly due to the prev-
alence of high wind speed and dry soil surface (Shukla and
Sharma 2008; Chakraborty and Gupta 2010). Emissions from
biomass burning were found to be high in winter and post-
monsoon seasons for both fractions of PM as proffered by
PMF output whereas PCA and UNMIX were not able to dif-
ferentiate this source separately. Emissions from BB are one
of the major problems in the Delhi region that cause devastat-
ing effects on human health, especially during post-monsoon
and winter seasons. PCA-APCS combines the markers of BB
with FFC source in all the seasons while UNMIX mixed three
sources, i.e., BB + FFC + SMS, in a single factor, probably
due to their overlapping tracers. PCA-APCS analysis assigned
the highest contribution of BB + FFC to PM2.5 and PM10 in
the winter seasonwhile minimum inmonsoon season, without
displaying striking seasonal differences. However, the
UNMIX model resolved the highest contribution of BB +
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FFC + SMS source type to PM10 in winter and to PM2.5 in
monsoon season, giving erroneous seasonal distribution. It is
to be noted that these types of mixed sources could not iden-
tify the seasonal variations since different sources show dif-
ferent contributions in different seasons as each source is char-
acteristic of a particular season. Hence, models producing the
mixed type of sources could not be relied on for determining
and quantifying seasonal sources.

NEERI (2010) also published the seasonal dominance of
potential sources of PM10 for the Delhi region. Construction
and soil dust sources dominate in the summer season while
solid waste burning and fuel combustion sources were major
contributors in post-monsoon and winter seasons (NEERI
2010). Ram et al. (2012) in Kanpur distinguished fine-mode
particulates as generally anthropogenic during winter as op-
posed to that from crustal amid summer. Jaiprakash et al.
(2017) also studied the seasonal variations in the contribution
of PM1.0 sources over Delhi and reported comparable results.
The contribution of SA and BB was higher in the winter
season while SD was dominant in the summer season. VE
is not showing any seasonal variation, while Nagar et al.
(2017) studied the seasonal variation of PM2.5 sources over
Delhi and identified the seasonal distribution of potential
sources similar to what has been observed in the present study.
BB (30%) and SA (26%) were the major contributors during
the winter season while SD (27%) and airborne fly ash (26%)
were significant contributors of PM2.5 during the summer sea-
son (Nagar et al. 2017). Different studies on comparison of
source apportionment results furnished by applying different
models on the same data sets also agreed that the contribution
and number of sources of PM as analyzed by different recep-
tor models may be different (Favez et al. 2010; Callén et al.
2009; Sharma et al. 2016b; 2020; Jain et al. 2017, 2019). The
variations in the results arise due to the incorporation of dif-
ferent theoretical approaches and procedures in the models
used for source apportionment. Conclusively, PMF appor-
tioned PM sources distinctively probably because PMF em-
ploys point-by-point error estimation of the data by permit-
ting down-weighting of outliers and missing values. PMF
(version 5.0) model helps to obtain the rotational ambiguity
with better representation of associated uncertainty compo-
nent (Manousakas et al. 2017), whereas PCA-APCS and
UNMIX estimated mixed type of sources as well. Mixing
of tracers of different sources together hinders the essence
of source apportionment by quantifying inappropriate
contribution and thus causes difficulty in understanding to
the users. Most importantly, PCA and UNMIX do not in-
clude uncertainties of the experimental data into analysis
while PMF includes the uncertainty of each species and
every sample into consideration and has a provision of
incorporating extra modelling uncertainty as well. This
function assists PMF in conferring more accurate and
consistent results (Paatero et al. 2013).

Back-trajectory analysis

In order to identify and trace the trans-boundary movement of
particulate matter from their potential source of origin to the
receptor site, 120-h backward air mass trajectories for each
experimental day, starting at 0500 h Universal Coordinated
Time (UTC) at the height of 500 m above ground level
(AGL) at the sampling site, were plotted employing the
National Oceanic and Atmospheric Administration (NOAA)
Air Resource Laboratory’s (ARL) Hybrid Single-Particle
Lagrangian Integrated Trajectory (HYSPLIT) model (http://
ready.arl.noaa.gov/HYSPLIT.php) with the Global Data
Assimilation System (GDAS) data as input (Draxler and
Rolph 2003). It can be observed that the majority of the air
mass parcel during the study period is approaching to receptor
site from regions of Pakistan, Punjab, Haryana, Uttar Pradesh,
IGP region, and its surrounding areas during the winter and
post-monsoon seasons (Fig. 4a, d). During the summer sea-
son, the air mass parcel was coming from the arid landscapes
of Rajasthan (Thar desert), regions of Pakistan, and
Afghanistan to the receptor location (Fig. 4b) whereas during
monsoon season, the approaching air mass was majorly
transported from IGP region and the Arabian Sea through
Rajasthan. However, some of the trajectories were seen to be
coming from the Bay of Bengal passing through the vast
stretch of IGP region (Fig. 4c). The trajectories have been
plotted to trace the origin and transport pathways of air masses
as they are ascribed to letting the influx of pollutants and their
precursors in the city. These groups of trajectories have been
also clustered together to display the major transport pathways
of the polluted air mass flow, so as to provide a picture of
dominant source regions precisely. It can be discerned that
the source regions are both trans-boundary and locally origi-
nated from the continental landmass.

Conclusions

The present study focuses on determining the seasonal varia-
tions in the source profile and source contribution to PM2.5

and PM10 concentrations over Delhi from January 2013 to
December 2016. Two receptor models (PCA-APCS and
UNMIX) were applied on the seasonally segregated data sets
of PM2.5 and PM10 and the results were compared with the
PMF model’s output for the same data sets. The three applied
models have their own sets of merits and demerits and thus
help in producing conjointly corroborated results to allow bet-
ter cognizance about the potential sources of PM2.5 and PM10

as well as the comportment of these sources with respect to
different seasons. The annual average concentrations of PM2.5

and PM10 were 131 ± 79 μg m−3 and 238 ± 106 μg m−3,
respectively. The maximum concentrations of both PM2.5

(186 ± 90 μg m−3) and PM10 (320 ± 97 μg m−3) recorded
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during the post-monsoon season (October–December),
whereas the minimum average concentrations of both PM2.5

(69 ± 28 μg m−3) and PM10 (152 ± 75 μg m−3) were observed
during monsoon season (June–September). All the three
models extracted similar sources (i.e., SA, VE, BB, SD,
FFC, IE, and SMS) but in different nature and contribution
to PMmass. The three applied models mutually confirmed the
dominant presence of 4 significant sources over Delhi, viz.,
SA, VE, BB, and SD, although the contribution of these
sources varies seasonally. PCA-APCS and UNMIX estimated
a less number of sources, including the mixed type of sources
as well, which may cause erroneous interpretation of seasonal
implications on source contribution to PM, whereas PMF
identified the highest number of sources (8) for both fine
and coarse fractions of PM in all the seasons without combin-
ing precursors of different sources that helps in determining
the accurate percent contribution of different sources in differ-
ent seasons, thus displaying significant seasonal variations.
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