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flexible perylenediimide/Gan 
organic–inorganic hybrid system 
with exciting optical and interfacial 
properties
Rachana Kumar1*, Sunil Singh Kushvaha2*, Mahesh Kumar3, Muthusamy Senthil Kumar4, 
Govind Gupta4, Kavindra Kandpal5 & pramod Kumar6*

We report the band gap tuning and facilitated charge transport at perylenediimide (pDi)/Gan interface 
in organic–inorganic hybrid nanostructure system over flexible titanium (Ti) foil. Energy levels of the 
materials perfectly align and facilitate high efficiency charge transfer from electron rich n-Gan to 
electron deficient PDI molecules. Proper interface formation resulted in band gap tuning as well as 
facilitated electron transport as evident in I–V characteristics. Growth of PDI/GaN hybrid system with 
band gap tuning from ultra-violet to visible region and excellent electrical properties open up new 
paradigm for fabrication of efficient optoelectronics devices on flexible substrates.

In the current era of modern technology and smart devices, the hybrid nanostructured materials are becom-
ing integral component of  devices1–3. Optical light emitting diodes (LED), sensors, detectors, transistors and 
photovoltaics have shown exciting performance with shifting paradigm from pure inorganic to organic–inor-
ganic hybrid systems where, hybrid materials form long range interface at the molecular  level4–11. In general 
organic–inorganic hybrids are composed of two or more components, typically inorganic and organic molecules, 
interacting together by weak physical or strong chemical  bonds12. The physical and chemical properties of the 
hybrid system is exhibited not simply from the sum of individual contributions but as the synergistic reinforce-
ment of specific properties. Originally organic–inorganic hybrid materials were reported for the design of hybrid 
polymers, silicon-carbon networks etc.13–18. However, in the recent years several semiconductor organic–inor-
ganic hybrids have come into reports for the tuning of band gap as well as enhancement of other optical and 
electronic properties for versatile  applications19,20. Excellent properties of MXene has been exploited by prepara-
tion of MXene-contacted Si solar cells delivering high power conversion efficiency due to improved interfacial 
 properties21. Self-powered wearable photodetectors have been developed using composite of ZnO:polyvinylidene 
 fluoride22 and solid state polyaniline:MgZnO  bilayer23.

Gallium nitride (GaN) is a very promising semiconductor for hybrid optoelectronic devices due to its high 
exciton energy, wide band gap and high  mobility24,25. Organic–inorganic interface has been tailored by applying 
different organic materials over GaN to obtain desired transport and optical properties. Pt nanoparticles coated 
GaN nanowires based field emitters showed reduced turn on voltage compared to neat GaN  nanowires26. The 
better performance was attributed to the electron states distribution near Fermi level providing more electrons to 
the conduction band at applied operating voltage. Moreover, integration of GaN with organic materials has been 
studied for generation of white light mostly on rigid  substrates27–30. Organic/GaN hybrids are of special interest 
to fabricate high performance power devices. Several polymer based materials have been used for down conver-
sion of emission  radiations31. The efficiency of colour conversion is greatly enhanced due to nonradiative Foster 
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resonance energy transfer (FRET) between GaN and organic molecules. Reports are available on functionaliza-
tion of GaN with organic molecules/biomolecules and have opened up application of III-nitride wide band gap 
systems in new fields of  applications32,33. Most of the studies have been performed using electron rich (p-type) 
organic semiconductor materials over GaN like PEDOT:PSS, F8BT, MEH-PPV, porphyrin, graphene etc.34. Such 
hybrid materials take the advantage of special optical properties of organic semiconductor in combination with 
excellent electrical properties of inorganic semiconductor. There are only a few studies on GaN based hybrid 
systems using electron deficient (n-type) organic materials. Schultz et al., demonstrated the tuning of GaN work 
function from 4.2 to 6.0 eV by using organic  acceptors35. Wang et al. demonstrated tuning of work function of 
H-Si(111) using two cyano-quinodimethane  derivatives36. Wang et al., have studied the molecular alignment 
and electronic structure of thermally deposited perylenetetracarboxylic dianhydride (PTCDA) molecules over 
black  phosphorous37. PTCDA has also been deposited over gold Au(111) and studied for their thermoelectric 
 properties38. Thin interlayer of PTCDA at Ag/n-GaAs contact decreases the Schottky barrier height from 0.81 to 
0.64 eV39. So far only a few organic acceptors are  reported40 for preparation of organic/GaN hybrid nanostruc-
tured materials for tuning of optical/electrical properties and require more research in this area.

The present work comprises preparation of perylenediimide (PDI)/GaN hybrid system by drop casting PDI 
solution on laser molecular beam epitaxy (LMBE) grown undoped n-GaN film over flexible titanium (Ti) metal 
foil (Fig. 1)41. PDI is electron deficient organic semiconductor material possessing highly applicable proper-
ties like, strong light absorption in the range of 400–700 nm due to their extended conjugated-π  systems42, self 
assembling  properties43–46, excellent electron  mobility47 etc.48–50. To synergize the advantages of GaN and PDI, 
the hybrid of PDI over GaN has been fabricated to deliver exciting optical and interfacial properties. Absorption, 
photoluminescence (PL), time resolved photoluminescence (TRPL) and transient absorption spectroscopy (TAS) 
have been employed to understand the energy level tuning and charge transfer interactions between PDI and GaN 
molecules. The dispersion of PDI molecules over GaN surface has been probed by different microscopy study. 
Modification of Pt/GaN Schottky contact in hybrid is investigated using current (I)–voltage (V) measurement 
by conducting atomic force microscopy (c-AFM). A thorough description of interaction between PDI and GaN 
molecules with its implication on optical and interfacial electrical properties has been given.

Results and discussion
The ratio of Ga to N plays a critical role in determining the GaN growth modes in III-nitride MBE process. Two 
dimensional (2D) GaN growth mode occurs under Ga-rich condition whereas, N-rich condition promotes 3D 
GaN  growth51. In the current work, GaN growth was performed under N-rich condition as additional nitro-
gen species was supplied during ablation of stoichiometric solid GaN  target41,51. The Ga and  GaN1−x ad-atom 
surface diffusion is low on polycrystalline Ti surface at growth temperature of 600 °C favouring the growth of 
GaN islands on Ti foil under N-rich growth condition. On the other hand, PDIs are highly fluorescing dyes 
in their J-aggregates however; J-aggregation results in poor electrical conductivity. PDIs with H-aggregation 
behaviour show high electrical conductivity but suffer with fluorescence quenching due to nonradiative energy 
transfer in aggregated state. We have reported PDI derivatives showing excellent fluorescence with high electri-
cal conductivity due to slipped π–π  stacking52,53. In the current work we used 2,6 diisopropyl phenyl substituted 
PDI (iPrP-PDI, will be referred as PDI in rest of the manuscript, Fig. 1) with disturbed π–π stacking resulting 
in high solubility with decent electrical conductivity and electron  mobility52. The HOMO–LUMO energy levels 
were calculated to be ~ − 5.9 and ~ − 3.8 eV respectively and suitably match with GaN energy levels. The hybrid 
system was fabricated as shown in Fig. 1 by drop casting the chloroform solution of PDI over GaN/Ti followed 
by annealing to remove the solvent and attain homogeneous dispersion.

To evaluate the optical properties of GaN/Ti and PDI/GaN/Ti hybrid nanostructure system, absorption and 
PL spectroscopy studies were performed. The absorption spectra of GaN/Ti, PDI/Ti and PDI/GaN/Ti are shown 
in Fig. 2a. GaN/Ti shows absorption at 358 nm equivalent to its direct band gap energy (~ 3.46 eV). PDI/Ti shows 
absorption bands at 507 and 532 nm for 0–1 and 0–0 π–π* electronic transitions, respectively. The absorption 
bands observed are similar to PDI films over glass  substrates52. PDI/GaN/Ti shows absorption bands at 361, 501, 
521, 543 and 578 nm where, GaN absorption band is red shifted while the PDI absorption bands are blue shifted 
(owing to H-type aggregate formation). There is also appearance of new absorption bands at 543 and 578 nm in 
hybrid for charge transfer (CT) states as also seen with organic donor and PDI nanostructured co-assembly54,55. 

Figure 1.  Schematic for preparation of PDI/GaN/Ti hybrid system.
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The appearance of CT bands suggests ground state interaction between the organic and inorganic semiconduc-
tors resulting in tuning of band gap in hybrid nanostructure. The formation of CT excitons can be exploited for 
photovoltaic and photodiode properties. To get further insight into CT between PDI and GaN, we performed 
PL and TRPL study.

Figure 2b represents the PL spectra of GaN/Ti, PDI/Ti and PDI/GaN/Ti hybrid structure using 325 nm 
excitation wavelength at room temperature. GaN/Ti emits at ~ 3.41 eV (364 nm) for near band edge emission of 
excitonic states with full width at half maximum (FWHM) of ~ 260 meV56. These values confirm that wurtzite 
GaN films are grown over Ti foil and it can be potentially used for hybrid optoelectronic device fabrications. 
PDI/Ti shows bands at 639 nm for 0–0 transition and 691 nm for 1–0 transition which are highly red shifted 
compared to PDI  films52 but similar to what observed for perylenediimide microwires for effective wave guiding 
due to strong π–π  stacking57. The PDI/GaN hybrid system shows lower emission intensity at 364 nm for GaN 
band edge emission, 536 nm for 0–0 transition, 576 nm for 1–0 transition and 629 nm for 2–0 transition of PDI 
molecules. One additional emission is observed at 694 nm similar to PDI/Ti. The blue shifted emission bands 
in hybrid system compared to PDI/Ti are similar to observed for monomeric behaviour of PDI in  solution52. 
This observation indicates towards non-aggregated dispersion of PDI molecules over GaN film forming proper 
interface as also ascertained by SEM analysis (discussed later).

Figure 2.  (a) Normalized absorption and (b) photoluminescence spectra of GaN/Ti, PDI/Ti and PDI/GaN/Ti.
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To find out the carrier dynamics and charge transfer in hybrid nanostructure system, TRPL was performed 
on GaN/Ti and PDI/GaN/Ti at room temperature. Figure 3 demonstrates the decay profile of 365 nm emission 
for GaN/Ti and hybrid samples. The decay was fit with two exponential function model where,  A1 ≫ A2 for both 
the samples and therefore, the slow decay component τ2 is  neglected58,59. At room temperature GaN/Ti shows 
the exciton lifetime of ~ 4.5 ns and decay rate is calculate to be 0.22 ns−1. For hybrid system the decay lifetime is 
highly reduced to 1 ns (~ 78% faster) with decay rate constant of 1 ns−1. The highly reduced lifetime is attributed 
towards charge transfer exciton formation at the PDI/GaN interface. The rate constant for charge transfer  (k(CT)) 
is calculated to be 0.78 ns−1 using following Eq. 160.

The efficiency of charge transfer (ϕCT) is calculated using Eq. 2 and found to be ~ 78%. Smith et al., also 
observed three times higher energy transfer rate for organic/GaN/InGaN hybrid system compared to bare GaN/
InGaN nanorod structure due to dominant nonradiative resonant energy transfer (RET) rate in hybrid system 
minimizing the nonradiative recombination  losses61.

Figure 4a and b shows the SEM top morphology of GaN/Ti and PDI/GaN/Ti films respectively where, GaN/
Ti exhibits grain structures while it becomes more homogeneous in hybrid samples. The inset of Fig. 4a shows 
the transmission electron microscopy (TEM) image of GaN showing grain size in the range of 100–200 nm. 
Cross sectional SEM view (Fig. 4c, d) also shows uniform coating of GaN thin film with PDI molecules without 
aggregate formation. To further analyze the morphological properties‚ AFM was performed in tapping mode 
by utilizing the Si tip with radii of ~ 10 nm. The AFM image for GaN/Ti (Fig. 5a) clearly revealed the growth 
of granular island of GaN thin film over Ti foil. Line profile across MN line (Fig. 5b) and statistical analysis 
revealed the lateral size of islands in the range of 80–200 nm. Deposition of PDI over GaN/Ti surface increases 
the lateral size of elongated islands in the hybrid system falling between 110 and 250 nm (Fig. 5c, d). The rms 
surface roughness of the GaN and PDI/GaN grown over Ti foil was estimated after statistical analysis of several 
AFM images with scan area of 2 × 2 µm2 and found to be ~ 20.7 (± 2) nm and ~ 17.5 (± 1.5) nm respectively. These 
observations revealed that PDI molecules cover granular GaN homogenously with increase in lateral size and 
the proper dispersion of PDI molecules decreases the roughness of GaN/Ti in hybrid. To study the interface 
electrical properties of PDI/GaN/Ti hybrid system we performed the c-AFM analysis using Pt coated AFM tip 
in contact mode. c-AFM is widely employed to investigate the electronic properties of films. 

Schematic of the procedure with energy level diagram is shown in Fig. 6a. The relative position of the energy 
levels at the interface of organic and inorganic semiconductors is an important ingredient to obtain superior 
 properties62. Conducting AFM tip was kept on positive bias with respect to GaN film for hybrid system. The 
advantage of c-AFM measurement is related to freedom of performing I–V independently and simultaneously at 
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Figure 3.  TRPL of GaN/Ti and PDI/GaN/Ti recoded at 365 nm emission at room temperature.



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:10480  | https://doi.org/10.1038/s41598-020-67531-3

www.nature.com/scientificreports/

Figure 4.  SEM images showing (a, b) surface morphology and (c, d) cross sectional view of GaN/Ti (a, c) and 
PDI/GaN/Ti hybrid (b, d). Inset of image (a) shows the TEM image of GaN where, the scale measures 200 nm.

Figure 5.  (a) AFM image of GaN film grown on Ti foil and (b) line profile across MN line in (a). (c) AFM 
image of PDI on GaN film grown on Ti foil and (d) line profile across OP line in (c).
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various locations of the samples at nanoscale level. Figure 6b shows the experimental I–V characteristic of GaN/
Pt and GaN/PDI/Pt Schottky diode. From the I–V characteristic, it is clear that the forward bias drop of GaN/
Pt (1.9 V) is much higher than GaN/PDI/Pt (1.2 V). The insertion of the PDI organic layer has improved the 
switching characteristic of the Schottky  contact63. Figure 6c and d shows the energy band diagram of the GaN/Pt 
and GaN/PDI/Pt hybrid. For GaN/Pt Shottky contact, the barrier for electron is 2.4 eV which, results in the high 
value of cut-in voltage. However, in GaN/PDI/Pt, due to the insertion of PDI organic material, Schottky barrier 
height reduces to 0.5 eV, thereby reduces the cut-in voltage. Surface states or interface dipole (0–1 nm) exists 
between PDI/Pt interface which accounts for Δ drop in barrier height. This interface state density introduces 
Fermi level pinning at the PDI/Pt interface. To explain the Fermi level pining a charge neutrality level (CNL) is 
defined at the interface. Above CNL level, all the surface states are considered as acceptor-like states and below 
CNL all the states are considered as donor-like states. The organic semiconductor PDI acts as a transport layer 
for the electron. As per the band-diagram‚ the GaN transfer the electrons to PDI and encounter the depletion 
at the PDI/GaN interface with a barrier height of 0.5 eV.

Ultrafast pump-probe spectroscopy is a tool to study the photogenerated charge carrier dynamics in film as 
well as in solution within few hundred femto seconds of photo-excitation. A pump pulse is used with higher 
energy than band gap of the material for excitation and probe pulse is passed after a particular delay time 
to measure the differential absorption spectra. In semiconductors, the probing frequency can precisely pro-
vide information about different transitions and processes. Probing with UV–Vis range wavelength provides 
information about transitions associated with valence band electrons to conduction band, to the trap states or 
intraband transitions of electrons. The negative features (ground state bleaching, GSB) in transient absorption 

Figure 6.  (a) Schematic representation of energy level diagram and I–V measurements on PDI/GaN/Ti foil 
using Pt coated conducting AFM tip. (b) I–V characteristics of bare GaN film and PDI/GaN hybrid on Ti foil. 
Schematic representation of energy level diagram of (c) GaN/Pt and (d) GaN/PDI/Pt Schottky junction.
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spectra correspond to ground state absorption (GSA), stimulated emission (SE) (decreasing population) while 
the positive features corresponds to photoexcited absorption (PEA) of transient species (increasing popula-
tion). 290 nm (4.3 eV) pump wavelength was used for GaN/Ti to avoid resonance with exciton absorption at 
360 nm. TAS spectrum of GaN/Ti (Fig. 7a) shows strong GSB at ~ 354 nm (3.50 eV) after 3 ps of photoexcitation 
(τ1 =  ~ 64 ps) and subsequently shifts to 358 (3.46 eV), 361 (3.43 eV) and 365 (3.39 eV) nm after 10 (τ1 =  ~ 95 ps), 
50 (τ1 = 111 ps) and 100 ps (τ1 = 125 ps) respectively (parenthesis shows lifetime of signal), which may be due to 
exciton ionization owing to high pump energy. In GaN, free exciton composes of three bands however due to 
high binding energy of GaN these excitonic bands are not  resolved64,65. At the same time after 3 ps PEA appears 
between 415 and 550 nm with maxima at ~ 530 nm. The band fits well with mono-exponential model function 
suggesting single step relaxation process with life time of ~ 85 ps (global fitting at 530 nm). The population for 
both GSB and PEA decreases simultaneously as ∆OD decreases with time for both the transitions and relaxes 
back to valence band through defects level (1.4–2.8 eV) (Fig. 8)66.

TAS spectra of PDI/GaN/Ti hybrid structure (Fig. 7b) also shows GSB for exciton transition with shifting of 
energy from 356 nm (3.48 eV) after 1 ps to 363 nm (3.41 eV) after 50 ps of photoexcitation. The lifetime is also 
reduced compared to GaN/Ti and varies from 1 to 50 ps. Most interestingly in hybrid nanostructure system GSB 

Figure 7.  Transient absorption spectra of (a) GaN/Ti with decay profile at 530 nm in inset with fitting and (b) 
PDI/GaN/Ti with decay profile at 530 and 700 nm with fitting in inset using 290 nm pump wavelength. A break 
is shown from 560 to 600 nm for pump double resonance at 580 nm.
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appears within 1 ps of photoexcitation while PEA appears after 1 ps of photoexcitation between 440–800 nm 
with maxima at ~ 700 nm. There is delay in appearance of transient species but still faster than GaN/Ti, which is 
basically due to intermolecular charge transfer between GaN and PDI at the interface. PDI anion radical shows 
the transient absorption near 700 nm in mixture with electron donor polymer poly(3-hexylthiophene) (P3HT)52. 
In the current case also we observed PDI anion radical absorption at ~ 700 nm with lifetime ~ 35 ps. The lifetime 
is much shorter than what was observed with P3HT:PDI solution mixtures (6 ns)52, however, in films the life-
times of charge separated states are seen highly  reduced67. The transient absorption for GaN exciton at 530 nm 
fits with biexponetial model function (compared to monoexponential fit in GaN/Ti) with decay time of τ1 ~ 5 ps 
and τ2 ~ 74 ps for PDI and GaN contribution respectively. TAS further supports the formation of charge transfer 
species in hybrid system as discussed above. There is effective interface formation between GaN and PDI with 
facilitated electron transport from electron rich GaN to electron deficient PDI. The energy level diagram for 
probable electron transitions is shown in Fig. 8.

On photoexcitation using the beam with higher energy than the band gap of GaN excites electron from the 
valence band maxima (i) of GaN to the conduction band (ii) which appears as ground state bleaching in TAS 
spectra. The absorption of excited electron in (ii) appears as transient bands (530 nm) which relaxes directly or 
through impurity levels (iii) present in material to the ground state. In PDI/GaN/Ti, the excited electrons in (ii) of 
GaN follow an additional path (iv) via LUMO energy level of PDI molecules forming CT states appearing as tran-
sient band at ~ 700 nm as also observed in TRPL with reduced PL life time of GaN excitons in hybrid structure.

In summary, PDI/GaN hybrid exhibits ground state charge transfer interactions and tuning of wide band gap 
of GaN from 3.46 to ~ 2.31 eV. PDI molecules homogeneously cover GaN thin film reducing the rms roughness to 
~ 17.5 nm. Proper interface and well aligned energy level of GaN and PDI facilitates efficiency of charge transfer 
~ 78% with decay rate constant of ~ 1 ns−1 which is as high as reported for other GaN based hybrid  systems61. 
Ultra fast pump-probe spectroscopy clearly identifies the charge transfer species generated above band edge 
energy excitation. I–V characteristics recorded by c-AFM indicated the formation of Schottky junction at GaN 
to Pt and PDI/GaN to Pt interface. Due to the insertion of PDI organic material, Schottky barrier height reduced 
to 0.5 eV in hybrid compared to 2.4 eV barrier height at GaN/Pt. PDI is polar molecule and preferentially adsorb 
on defect sites of GaN film, contributing in reduction of effective barrier height. This is in line with the previous 
reports on Ag/PTCDA/GaAs39 and PEDOT:PSS/Si-GaN interfaces where organic layer preferentially adsorb on 
defect sites and induce reduction in barrier height explained by strong contribution of low dielectric constant 
of organic  molecules68. Such properties are highly required for smart devices and PDI/GaN/Ti is envisaged as a 
new combination of organic n-type semiconductor-GaN hybrid nanostructured system with potential optical 
and electrical properties.

conclusions
We have established a new PDI/GaN hybrid system over flexible Ti foil and characterized using optical and elec-
trical tools. PDI over GaN forms a proper interface and facilitates charge transfer from GaN to PDI molecules. CT 
band in absorption spectrum, quenched life time of GaN emission and presence of transient absorption bands 
for charge separated species corroborate well with the inference. PDI deposition smoothens the surface and also 
lower the turn on voltage in hybrid system. With this work we establish a less explored area of organic/inorganic 
hybrid system where an electron deficient organic semiconductor is interfaced with n-GaN over flexible Ti foil 
resulting in band gap tuning as well as exciting and promising electrical properties to be used in optoelectronic, 
sensor or energy harvesting devices.

Methods
The GaN film was grown on Ti metal foil (Alpha Aesar, thickness: 0.127 mm, purity: 99.99%) using laser assisted 
molecular beam epitaxy (SVT Associates, Inc. USA) technique (base pressure: 2 × 10–10 Torr). After cleaning with 
organic solvents, the Ti foil was degassed in the preparation chamber for ~ 3 h at 200 °C. Later, the pre-treated Ti 
foil was transferred in main chamber and thermal cleaning was performed by heating at 850 °C for 30 min via 

Figure 8.  Electron transitions at the interface in GaN/Ti and PDI/GaN/Ti system in ultrafast transient 
absorption spectroscopy study.
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infra-red radiation resistive heater. The GaN film was grown under N-rich growth condition on pre-nitridated 
Ti foil at 600 °C for 2 h by ablating the solid GaN target (purity: 99.9999%) via KrF excimer laser (wavelength: 
248 nm) in the presence of r. f. nitrogen plasma (0.4 sccm nitrogen flow, r. f. power 250 W) and the other details 
are presented  elsewhere41. iPrP-PDI derivative was synthesized using reported  method52. PDI/Ti and PDI/GaN/
Ti were deposited over cleaned Ti foil and GaN/Ti respectively‚ by drop casting 1 μM chloroform solution passed 
through 0.45 μ PTFE filter followed by annealing at 50 °C for 1 h. Absorption spectra was recorded on Avantes 
fiber optic spectrophotometer. The optical properties were also characterized using steady-state PL and TRPL 
spectroscopy using a He–Cd laser source (Melles Griot) with an excitation wavelength of 325 nm at room tem-
perature. Zeiss EVO-MA10 scanning electron microscope (SEM) was used to analyse the surface morphology 
and cross-sectional view of GaN/Ti and PDI/GaN/Ti samples. The TEM sample was prepared on carbon Lacey 
Cu grid by dispersing the GaN and Tecnai G2 HR-TEM system was used to study the microstructure of GaN 
with an operating voltage of 300 kV. The Multimode-V Veeco AFM in tapping mode was performed to analyze 
the grain size and surface roughness whereas, I–V characteristics were measured using Pt-coated conducting 
AFM tip in contact mode. To study the ultrafast dynamics and charge transfer states TAS study was performed 
at room temperature. An optical pulse (35 fs, 4 mJ/pulse, 1 kHz, 800 nm) from Ti:Sapphire laser amplifier was 
split into two beams using a beam splitter. The wavelength of high intensity beam (pump) was varied from 190 
to 2,600 nm by employing an optical parametric amplifier (TOPAS, Light Conversion). White light continuum 
(WLC) was generated from the weak intensity beam (probe) propagated through a CaF2 crystal. The probe beam 
was optically delayed with respect to pump beam by using a computer-controlled delay stage. A beam 290 nm 
pump wavelength was used at normal incidence and the change in absorption was detected by gated CMOS 
detector. HELIOS (Ultrafast systems) spectrometer was used for time resolved study.
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