Effect of rare-earth doping on the superconducting properties of MgB₂

N. Ojha,¹ G. D. Varma,^{1,a)} H. K. Singh,² and V. P. S. Awana² ¹Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India ²National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India

(Presented 11 November 2008; received 22 September 2008; accepted 21 November 2008; published online 9 March 2009)

The bulk polycrystalline samples with nominal compositions $Mg_{1-x}(Eu_2O_3)_{x/2}B_2$ and $Mg_{1-x}(Pr_6O_{11})_{x/6}B_2$ (where x=0.0, 0.01, 0.02, 0.03, 0.04, and 0.05) have been prepared via standard solid-state reaction route. The x-ray diffraction (XRD) results of both series of materials reveal the presence of secondary phases MgO and REB₆(RE=Eu/Pr) besides the main hexagonal phase of MgB₂. The magnetic and electrical measurements show that transition temperatures (T_c) of both Eu₂O₃ and Pr₆O₁₁-doped MgB₂ samples decrease from 39 to 37 K when values of x increase from 0.0 to 0.05. Improvement in critical current density (J_c) at 10 K has been observed at higher fields (>4 T) for Eu₂O₃-doped samples of composition x=0.04 and in entire field range (0–5 T) in the case of Pr₆O₁₁-doped MgB₂ samples are 2.21×10³, 1.15×10⁴, and 1.10×10⁴ A/cm², respectively. Improvement in H_{c_2} and H_{irr} has also been observed in doped samples. © 2009 American Institute of Physics. [DOI: 10.1063/1.3072379]

The MgB₂ superconductor with transition temperature $(T_c) \sim 39$ K has been considered as a promising material for practical applications in a temperature range of 20-30 K.¹ The strong potential for commercial applications of MgB₂ is due to its low cost, low anisotropy, larger coherence lengths, and strong coupling across grain boundaries.^{2,3} Pristine MgB₂, however, does not appear to be very promising for applications because of its low H_{c_2} and H_{irr} values. J_c of pure MgB₂ falls rapidly in high fields due to poor grain connectivity and lack of pinning centers. Therefore, to make practical devices using MgB₂, it is essential to improve its critical current density $J_c(H)$ in high magnetic fields H, upper critical field (H_{c_2}) , and irreversibility field (H_{irr}) . For this a lot of efforts have been made in previous years using various methods, such as irradiation,⁴ chemical doping,⁵ and increasing grain boundaries through reducing grain size. Several C-containing dopants such as nanodiamond, nanocarbon tubes, SiC, etc.⁶⁻⁸ have been used to improve the superconducting properties of MgB₂. Usually it has been seen that the substitutions of magnetic elements with strong magnetic moment such as Fe, Co, etc.^{9,10} into MgB₂ degrade superconducting properties. On the other hand, doping of rare-earth (RE) elements which also possess magnetic moment into MgB₂ do not degrade much its superconductivity. Recently, the addition of nano- and submicron particles of RE oxides such as Y_2O_3 , Dy_2O_3 , Ho_2O_3 , and Pr_6O_{11} have been found to increase the flux pinning in MgB₂.¹¹⁻¹⁴ In this paper we report the effect of Eu₂O₃ and Pr₆O₁₁ doping on the structural and superconducting properties of MgB₂. Improvement in $J_c(H)$, H_{c_2} , and H_{irr} of the doped samples have been observed in the present study.

The bulk polycrystalline samples of Eu₂O₃ and Pr₆O₁₁-doped MgB₂ were synthesized, respectively, with nominal compositions $Mg_{1-x}(Eu_2O_3)_{x/2}B_2$ and $Mg_{1-x}(Pr_6O_{11})_{x/6}B_2$ (where x=0.0, 0.01, 0.02, 0.03, 0.04, and 0.05) via standard solid-state reaction route by sintering at 850 °C for 3 h in Ar atmosphere. The structural and phase analyses of the samples were performed using x-ray diffractometer. The variation in resistance with temperature was studied with increasing magnetic field up to 8 T using Quantum Design physical property measurement system. The magnetic measurements were performed by using superconducting quantum interference device magnetometer.

Figure 1 shows the x-ray diffraction (XRD) patterns of Eu₂O₃ and Pr₆O₁₁-doped MgB₂ samples synthesized in the present work. The XRD patterns reveal the presence of secondary phases MgO and EuB₆/PrB₆ besides the main MgB₂ phase. In the XRD patterns of Pr₆O₁₁-doped samples of compositions $x \ge 0.03$ there is one weak peak corresponding to PrB_4 phase. All the impurity peaks are marked in Fig. 1. The peak intensities of EuB₆/PrB₆ peaks increase with increase in Eu_2O_3/Pr_6O_{11} content in the samples. This indicates that Eu2O3/Pr6O11 decomposed at reaction temperature and reacted with B to form EuB₆/PrB₆. We have estimated the volume fraction of EuB_6/PrB_6 in the samples from the x-ray peak intensities using the relation: volume fraction of EuB_6 or PrB_6 phase = \sum integrated peak intensities of EuB₆ or PrB_6 phase/ Σ integrated intensities of all phases. In Eu₂O₃-doped samples the volume fractions of EuB_6 are 0.200, 0.266, 0.355, 0.423, and 0.417 for x = 0.01, 0.02, 0.03, 0.04, and x = 0.01, 0.02, 0.03, 0.04, 0.00.05, respectively. Similarly in Pr_6O_{11} -doped samples the volume fractions of PrB₆ are 0.081, 0.244, 0.451, 0.458, and 0.467 for x=0.01, 0.02, 0.03, 0.04, and 0.05, respectively. Thus volume fraction of EuB₆/PrB₆ phase in the samples increases with the increase in doping concentration of Eu/Pr.

105, 07E315-1

^{a)}Author to whom correspondence should be addressed. Tel.: +91-1332-285353. FAX: +91-1332-273560. Electronic mail: gdvarfph@iitr.ernet.in.

FIG. 1. XRD patterns of the sample synthesized with nominal compositions $Mg_{1-x}(Pr_6O_{11})_{x/6}B_2$ (a) and $Mg_{1-x}(Eu_2O_3)_{x/2}B_2$ (b). X, 0, and * represent peaks of MgO, REB₆, and PrB₄, respectively.

In addition, from the XRD results we have not seen appreciable change in the lattice parameters with doping concentration of Pr_6O_{11} and Eu_2O_3 . This indicates that possibly Pr and Eu are not doped into the MgB₂ lattice. It is also seen that the broadening of diffraction peaks of MgB₂ phase increases in both series of compounds with doping concentration except for Pr_6O_{11} -doped sample of composition x=0.01. From this result it is concluded that particle size of the samples decreases with the increase in doping concentration. This is possibly due to strain produced by the secondary phases which concentration increases on increasing doping concentration.

The transition temperatures (T_c) of Eu₂O₃- and Pr_6O_{11} -doped MgB₂ samples have been determined from the resistance versus temperature (R-T) measurements. From the *R*-*T* measurements (figure not shown here) it has been found that the T_c decreases only from 39 to 37 K when values of x increases from 0.0 to 0.05 for both Eu₂O₃- and Pr₆O₁₁-doped samples. Only marginal decrease in T_c with the increase in doping level may be due to small solubility of Eu/Pr in MgB₂. This is also clear from the XRD patterns that the intensity of peaks of EuB₆/PrB₆ phase increases rapidly with the increase in doping level (see Fig. 1). Therefore, doped Eu/Pr does not directly affect the boron sheet which is responsible for superconductivity in MgB₂. From the present result it is also concluded that the pair-breaking effect of the magnetic moment of the RE elements is not striking in MgB₂. Further, from the R-T measurements it has been found that the residual resistivity ratio $(RRR=R_{300}/R_{onset})$ values continuously decreases with x (from 3.38 to 2.81 in Pr₆O₁₁-doped MgB₂ and from 3.38 to 2.54 in Eu₂O₃-doped MgB_2). This is due to the increase in the amount of impurity phases as doping concentration increases in the samples. These impurity phases can enhance the electron scattering, and hence the decreased RRR value.¹⁵ The insets of Fig. 2(a) and 2(b) show, respectively, the *R*-*T* plots of Pr_6O_{11} and Eu_2O_3 -doped samples (x=0.01) measured at different fields (0-8 T). Similar plots have been obtained for other compositions. The transition temperatures of both doped and un-

FIG. 2. (Color online) $H_{c_2}(T)$ and $H_{irr}(T)$ vs normalized temperature plots of the samples synthesized with nominal compositions $Mg_{1-x}(Pr_6O_{11})_{x/6}B_2$ (a) and $Mg_{1-x}(Eu_2O_3)_{x/2}B_2$ (b). Insets of (a) and (b) show, respectively, the *R*-*T* plots of $Mg_{1-x}(Pr_6O_{11})_{x/6}B_2$ and $Mg_{1-x}(Eu_2O_3)_{x/2}B_2$ samples (*x*=0.01) measured in applied fields.

doped samples as usual decrease with the increase in the applied field. However, it has been seen that the reduction in T_c due to applied field decreases as doping concentration in the sample increases.

The irreversibility field $[H_{irr}(T)]$ and the upper critical fields $[H_{c_2}(T)]$ at various temperatures of doped and undoped MgB₂ samples have been calculated from the resistive transitions using the criteria of 0.1 and 0.9 of $R(H, T_c)$, respectively. The variation in $H_{c_2}(T)$ and $H_{irr}(T)$ with respect to reduced temperature for each composition is shown in Fig. 2. From the plots it is clear that the $H_{c_2}(T)$ values of doped samples are higher than that of undoped one at all temperatures except x=0.01 for Eu₂O₃-doped sample. It has been reported that the enhancement in upper critical field occurs from the reduction of the mean free path of the charge carriers and the corresponding reduction of the enhancement in H_{c_2} of doped samples is possibly due to lattice distortion created through Eu₂O₃ and Pr₆O₁₁ dopings leading to en-

FIG. 3. (Color online) J_c vs H(t) plots of the samples synthesized with nominal compositions $Mg_{1-x}(Pr_6O_{11})_{x/6}B_2$ (a) and $Mg_{1-x}(Eu_2O_3)_{x/2}B_2$ (b).

hanced impurity scattering. The effect of Eu₂O₃ and Pr₆O₁₁ dopings on H_{c_2} in the present case is quite different from the earlier results of RE-doped samples. For example, in the case of Ho₂O₃-doped MgB₂ no change in H_{c_2} has been observed¹³ with doping concentration. From Fig. 2 it is clear that the value of H_{irr} first decreases up to x=0.01 then increases with x in Eu₂O₃-doped MgB₂. But in the case of Pr₆O₁₁-doped MgB₂ the value H_{irr} increases with x. Similar results have been obtained earlier on Ho₂O₃- and Pr₆O₁₁-doped MgB₂ samples.¹⁴

The field dependence of the critical current density $J_c(H)$ of the doped and undoped samples, estimated by using beans critical model¹⁷ from the *M*-*H* loops measured at 10 K, is shown in Fig. 3. From Fig. 3(a) it can be seen that in the case of Pr₆O₁₁-doped samples the critical current density of x = 0.03 sample has higher value as compared to other samples in the entire field range (0–5 T). For example, at 5 T J_c values of undoped sample and x=0.03 sample are 2.21 $\times 10^3$ and 1.15×10^4 A/cm², respectively. Thus our result on $J_c(H)$ is different from the result of Pan *et al.*¹⁴ reported earlier. They found that 3% Pr₆O₁₁-doped sample has higher J_c than undoped one in the low field region and opposite behavior in high field region. But in our case except for x = 0.03 all other samples have lower values of J_c as compared

to undoped sample in whole magnetic field range. From Fig. 3(b) it is clear that in the low field region (<2 T), J_c of MgB₂ decreases as doping concentration of Eu₂O₃-increases. However, when field values exceed 2 T, J_c of x=0.01 sample becomes greater than that of undoped sample and finally in the fields >4 T J_c of x=0.04 sample has higher value as compared to undoped one. Here the values of J_c at 5 T of undoped sample and x=0.04 sample are 2.21×10^3 and 1.10×10^4 A/cm², respectively. It is further noted that the rate of decrease in J_c with field is less for the doped samples as compared to the undoped one. We have studied the magnetic property of PrB₆ and EuB₆ impurity phases by measuring the *M*-*H* curves at room temperature (figure not shown) with vibrating sample magnetometer. From the M-H measurements we have seen that the secondary phases PrB_6 and EuB₆ show paramagnetic behavior at room temperature. Thus the presence of magnetic impurities at the grain boundaries may provide stronger attraction force to flux lines than the nonmagnetic impurities and hence enhance the flux pinning effect in MgB₂ without affecting much its T_c leading to improvement in $J_c(H)$ and H_{irr} of doped samples.

In summary we have seen improvement in $J_c(H)$, H_{c_2} , and H_{irr} of MgB₂ through doping of RE oxides: Pr₆O₁₁ and Eu₂O₃. It is argued that impurity phase EuB₆/PrB₆ provide strong flux pinning leading to improvement in $J_c(H)$ and H_{irr} .

The authors are thankful to Dr. Rajiv Rawat, UGC-DAE CSR, Indore Centre for R-T measurements in magnetic fields. The financial supports from C.S.I.R. and M.H.R.D. (Govt. of India) are highly acknowledged.

- ¹J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) **410**, 63 (2001).
- ²D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, and A. A. Squitieri, Nature (London) **410**, 186 (2001).
- ³C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001).
- ⁴Y. Bugoslavsky, L. F. Cohen, G. K. Perkins, M. Polichetti, T. J. Tate, R. Gwilliam, and A. D. Caplin, Nature (London) **411**, 561 (2001).
- ⁵Y. Zhao, Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N. Koshizuka, and M. Murakami, Appl. Phys. Lett. **79**, 1154 (2001).
- ⁶J. H. Kim, W. K. Yeoh, M. J. Qin, X. Xu, and S. X. Dou, J. Appl. Phys. **100**, 013908 (2006).
- ⁷Y. Ma, X. Zhang, G. Nishijima, K. Watanabe, S. Awaji, and X. Bai, Appl. Phys. Lett. 88, 072502 (2006).
- ⁸S. K. Chen, K. S. Tan, B. A. Glowacki, W. K. Yeoh, S. Soltanian, J. Horvat, and S. X. Dou, Appl. Phys. Lett. **87**, 182504 (2005).
- ⁹H. Kitaguchi and H. Kumakura, Supercond. Sci. Technol. **18**, S284 (2005).
- ¹⁰C. H. Cheng, Y. Zhao, X. T. Zhu, J. Nowotny, C. C. Sorrell, T. Finlayson, and H. Zhang, Physica C 386, 588 (2003).
- ¹¹J. Wang, Y. Bugoslavsky, A. Berenov, L. Cowey, A. D. Caplin, L. F. Cohen, J. L. M. M. Driscoll, L. D. Cooley, X. Song, and D. C. Larbalestier, Appl. Phys. Lett. **81**, 2026 (2002).
- ¹²S. K. Chen, M. Wei, and J. L. M. M. Driscoll, Appl. Phys. Lett. 88, 192512 (2006).
- ¹³C. Cheng and Y. Zhao, Appl. Phys. Lett. 89, 252501 (2006).
- ¹⁴X. F. Pan, T. M. Shen, G. Li, C. H. Cheng, and Y. Zhao, Phys. Status Solidi A 204, 1555 (2007).
- ¹⁵A. Vajpayee, V. P. S. Awana, G. L. Bhalla, and H. Kishan, Supercond. Sci. Technol. **19**, 125708 (2008).
- ¹⁶N. Horhager, M. Eisterer, H. W. Weber, T. Prikhna, T. Tajima, and V. F. Nesterenko, J. Phys.: Conf. Ser. 43, 500 (2006).
- ¹⁷C. P. Bean, Rev. Mod. Phys. **36**, 31 (1964).