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Abstract
The present work is the ensuing part of the study on spatial and temporal variations in chemical characteristics of  PM10 (par-
ticulate matter with aerodynamic diameter ≤ 10 μm) over Indo Gangetic Plain (IGP) of India. It focuses on the apportionment 
of  PM10 sources with the application of different receptor models, i.e., principal component analysis with absolute principal 
component scores (PCA-APCS), UNMIX, and positive matrix factorization (PMF) on the same chemical species of  PM10. 
The main objective of this study is to perform the comparative analysis of the models, obtained mutually validated outputs 
and more robust results. The average  PM10 concentration during January 2011 to December 2011 at Delhi, Varanasi, and 
Kolkata were 202.3 ± 74.3, 206.2 ± 77.4, and 171.5 ± 38.5 μg m−3, respectively. The results provided by the three models 
revealed quite similar source profile for all the sampling regions, with some disaccords in number of sources as well as their 
percent contributions. The PMF analysis resolved seven individual sources in Delhi [soil dust (SD), vehicular emissions (VE), 
secondary aerosols (SA), biomass burning (BB), sodium and magnesium salt (SMS), fossil fuel combustion, and industrial 
emissions (IE)], Varanasi [SD, VE, SA, BB, SMS, coal combustion, and IE], and Kolkata [secondary sulfate (Ssulf), second-
ary nitrate, SD, VE, BB, SMS, IE]. However, PCA-APCS and UNMIX models identified less number of sources (besides 
mixed type sources) than PMF for all the sampling sites. All models identified that VE, SA, BB, and SD were the dominant 
contributors of  PM10 mass concentration over the IGP region of India.

Worsening air quality has become the foremost perturb in 
the world, causing approximately 7 million global deaths 
as revealed by World Health Organization (WHO) (2014) 

and 3.2 million annual deaths solely due to airborne fine 
particulates (WHO 2014). Particulate matter (PM) is a mul-
ticomponent mixture of solid and liquid particles suspended 
in air (Ramgolam et al. 2009). They originate from a wide 
range of sources and transform eventually through numerous 
microphysical processes, such as coagulation, nucleation, 
and condensation, which scavenge off through wet and dry 
deposition (Perrino et al. 2011). The role of atmospheric PM 
is being increasingly recognized in Earth’s climate system 
due to its potential to exert climate forcing by affecting the 
Earth’s radiative balance directly by the extinction of the 
incoming solar radiation and indirectly by acting as cloud 
condensation nuclei (CCN) (IPCC 2013). In the past two 
decades, health-related issues are statistically associated 
with worsening air quality due to the presence of aerosols in 
the atmosphere (Pope et al. 2009; Li et al. 2004). Recently, 
several studies about the increasing risks of myocardial 
ischemia, systemic inflammation, and blood pressure due to 
traffic and other combustion related exposures have unveiled 
the significant role of PMs size, composition, and sources in 
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health-related concerns (Dachs and Eisenreich 2000; Sharma 
et al. 2014a; Brauer et al. 2015; Karagulian et al. 2015).

To assess aerosols effects on air quality and climate, it is 
crucial to understand their primary and secondary sources 
along with their characteristics in time and space. The exi-
gency to comprehend the potential source categories and 
their contributions has become imperative to reduce the PM 
pollution. The US EPA receptor models and other math-
ematical or statistical procedures essentially quantify the 
contribution of individual sources to particulate loading at 
a particular location, based on source and receptor charac-
teristics and in certain cases, with the nature of pollutants 
(Hopke 2016; Hopke et al. 2006; Kong et al. 2010). Fun-
damentally, the three selected receptor models used for the 
present study, i.e., principal component analysis (PCA) with 
absolute principal component score (APCS), UNMIX, and 
positive matrix factorization (PMF), adopt similar chemical 
mass balance procedures. The assumptions include that the 
chemical species remain unchanged from their respective 
sources to receptor location, and their time dependence will 
be same at the receptor sites coming from the same sources 
(Belis et al. 2013). These receptor models are based on the 
following equation:

All of the variables denote a matrix: X for concentra-
tion, G for source contribution, F for source profile, and 
E for unfit elemental concentration (Paatero and Tapper 
1994; Hopke et al. 2006). These receptor models based on 
factor analysis require quantitative data of the chemical 
characteristics of PM along with little qualitative knowl-
edge about different sources at the receptor site (Pant and 
Harrison 2012). The theoretical and statistical approaches 
that define these models have already been explicated in 
detail in a number of research articles (Thurston and Spen-
gler 1985; Paatero 1999; Henry 2003;  Hopke 2016; Song 
et al. 2006; Chen et al. 2007; Zheng et al. 2007; Viana et al. 
2008; Begum et al. 2010; Harrison et al. 2011; Gugam-
setty et al. 2012; Pant and Harrison 2012; Shi et al. 2014; 
Sharma et al. 2014a, b, 2015; 2018a, b; Cesari et al. 2018; 
Jain et al. 2017a, b). In respect of source apportionment 
studies of  PM10 in India, the majority of studies were per-
formed using PCA and classic factor analysis, which has 
drastically been shifted to PMF model recently, accredited 
to its idiosyncrasies (Banerjee et al. 2015). PMF is efficient 
in handling missing or below detection level data as well as 
includes individual level data uncertainties. PCA investi-
gates the structure and variation in a dataset and accordingly 
fetches the pattern in the data (Viana et al. 2008). UNMIX 
is the least studied model in India, i.e., only 3% studies have 
been reported through the year 2014 (Banerjee et al. 2015). 
UNMIX exploits the single-value decomposition method for 

(1)X = GF + E

procuring the number of contributing sources to PM. Further 
explications on different aspects of these models are avail-
able in the next section of this paper.

The present work, which is an ensuing part of the pre-
vious study published by our group (Sharma et al. 2016b) 
on spatial and temporal variations in chemical characteris-
tics of  PM10 over IGP of India, deals in the application of 
different receptor models (i.e., PCA-APCS, UNMIX, and 
PMF) on the same data set to obtain the mutually validated 
outputs and more robust results. The study adopts a syn-
ergistic approach to monitor the different parameters, cou-
pling different models known to achieve in a united manner 
what could not have been achieved alone. The overall goal 
of this study is to narrow the gaps in the understanding of 
region-specific potential sources of  PM10 over urban cities 
of IGP of India. The study accounts the detailed analysis of 
aerosol particles’ chemical properties and quantifying the 
contribution of each and every source to  PM10 pollution. 
IGP, known to be the major food basket of India, has ranked 
among the world’s most densely populated and intensely 
farmed areas. IGP is one of the most expeditiously grow-
ing regions in terms of industrialization and urbanization. 
The region is treacherously congested, overpopulated, and 
majorly culpable of contributing PM pollution throughout 
India and Indian subcontinents, which is burgeoning from 
the sources, such as fossil fuel combustion, biomass burning, 
and agricultural activities. This study aids in deciphering the 
intricacies involved in source apportionment of  PM10 over 
the IGP region using receptor models, such as PCA-APCS, 
UNMIX, and PMF.

Materials and Methods

Experimental Sites

The IGP, popularly called the north Indian river plain, is an 
extensive alluvial crescent, stretching from the Indus river 
system in Pakistan, encompassing most of northern and east-
ern India, to the Ganges delta in Bangladesh. The IGP is a 
255-million hectare (ha) fertile plain, comprising homog-
enous topography and has ranked among the world’s most 
densely populated and intensely farmed areas (Sharma et al. 
2016b). The sampling sites selected for the present study 
were chosen to represent the vast stretch of IGP in the Indian 
subcontinent, having exceedingly polluted atmospheric con-
ditions, i.e., Delhi, Varanasi, and Kolkata, which epitomizes 
the upper, middle, and lower regions of IGP, respectively 
(Fig. 1). The chosen sites represent the characteristic urban 
environments and exemplify the concoction of local sources 
and transboundary features of atmospheric pollutants.
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Delhi

Delhi, a megacity of India, is situated in the northern part 
of the country and is enclosed by Himalayan ranges in the 
north, IGP in the east, central Plains in the south, and Thar 
Desert in the west. Delhi observes semiarid climatic condi-
tions with dry and scorching summers, humid monsoons, 
followed by chilly winters (Goyal and Sidhartha 2002; Jain 
et al. 2017b). Furthermore, Delhi is notorious for its severe 
fog and haze conditions during winters and heavy dust 
storms during summers, which causes an influx of mineral 
dust to the aerosol loading (Ram and Sarin 2010).  PM10 
samples were collected on the roof [at a height of ~ 10 m 
above ground level (AGL)] of CSIR-National Physical Labo-
ratory, New Delhi [28°38′N, 77°10′E; 218 m above mean 
sea level (amsl)]. The sampling location signifies the typical 
urban environment, bounded by the heavy traffic-congested 
area in the southeast (SE), agricultural fields in the south-
west (SW), and institutional and residential area in north 
direction. In addition to ever-increasing vehicular growth, 
many large- and small-scale industries are present in and 
around Delhi.

Varanasi

Varanasi, the spiritual capital of India, is located on the 
banks of the river Ganges, in the north Indian state of Uttar 
Pradesh and has grown into an important industrial center 
in recent past years. Varanasi observes a typical humid sub-
tropical condition with hot and dry summers (temperature 
range: 22–46 °C) and diurnally varied winters (warm days 
and downright cold nights).  PM10 samples were collected 
on the roof (at ~ 10 m AGL) of the Department of Geophys-
ics Banaras Hindu University (25°18′N, 83°03′E; 129 m 
amsl), Varanasi. The sampling area represents a character-
istic urban environment enclosed by heavy traffic area on 
one side and residential and commercial expanse on others. 
Details of the site description are available in our previous 
paper and reference therein (Sharma et al. 2016b).

Kolkata

Kolkata is the capital of West Bengal (eastern Indian state). 
The city, located on the eastern bank of the Hooghly River 
(spread along 80 km), is the East India’s prime commercial 
and educational center. The city with 4.5 million population 
lies within the lower Ganges delta of Eastern India, with 

Fig. 1  Map of observational sites (Delhi, Varanasi, and Kolkata), IGP, India
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1.5–9 m elevation (amsl: above mean sea level). Kolkata 
observes tropical wet and dry climate with annual mean 
temperature of 26.8 °C. The city experiences 1800 mm 
of annual rainfall between June and September, which is 
majorly brought by the southwest summer monsoon. Sam-
ples of  PM10 were collected on the roof (at ~ 10 m AGL) 
of Bose Institute (22°33′N and 88°20′E; 9 m amsl), which 
represents a characteristic urban environment of the megac-
ity Kolkata.

PM10 Sampling

PM10 samples were collected periodically (4–5 samples per 
month) on pre-combusted (at 550 °C for at least 5 h to eradi-
cate the organic impurities) quartz microfiber filters (QM-A; 
size: 20 × 25 cm2) during January 2011–December 2011 at 
Delhi (n = 50), Varanasi (n = 45), and Kolkata (n = 54) of 
IGP, India, using respirable dust samplers (RDS) (model: 
PEM-RDS 8NL, Make: M/s. Polltech Instruments, Mumbai, 
India). The flow rate of the instrument was calibrated with 
top loading orifice calibrator traceable to national standard 
(accuracy: ± 1% of full scale). The flow meters also were cal-
ibrated (with the accuracy of ± 2% of full scale) with air flow 
calibrator traceable to national standard having the average 
flow rate of ~ 1.13 m3 min−1. The sampling was done for 8 h 
on a day and night basis [during the daytime (1000–1800 h) 
and nighttime (1900–0300 h)]. In general, rush hour (huge 
traffic influence) started from 0900 to 1100 h and 1700 to 
1900 h in Delhi (Sharma et al. 2016b); hence, the sam-
pling had been started at 1000 h (at daytime) and 1900 h 
(at nighttime). The sample has been collected for 8 h to fol-
low the common protocol (i.e., 8 or 12 or 24 h) of Central 
Pollution Control Board (CPCB), New Delhi, India. The 
sample filters were weighed before and after the sampling 
during the experiment to determine the mass of the  PM10 
collected. The concentration of  PM10 (μg m−3) was calcu-
lated on the basis of the difference between final and initial 
weights of the QM-A filters (measured by a microbalance; 
resolution ± 10 μg) and divided by the total volume of air 
passed during the sampling. After collecting the samples, 
filters were stored under dry conditions in the deep-freezer 
at − 20 °C before analysis.

Chemical Analysis

The heavy and trace metals (Al, Ti, Zn, Fe, S, P, and B) 
were analyzed through a quantitative elemental nondestruc-
tive method using Rigaku ZSX Primus wavelength disper-
sive X-ray fluorescence spectrometer (WD-XRF). WD-XRF 
consists of spectrometer with scintillation counter (SC) for 
heavy elements and flow proportional counter (F-PC) for 

light elements, sealed X-ray tube for excitation, end window, 
and an Rh target. The instrument was set to vacuum condi-
tions and measurements were done at a temperature of 36 °C 
and a tube rating of 2.4 kW. Blank filter measurements were 
also taken, which is further used for the intensity correction 
of exposed filters. Based on triplicate analysis of filters, ana-
lytical error or repeatability measurement was approximated 
to be 5–10%.

A punch of ~ 0.536 cm2 area of each  PM10 filter as well 
as blank filter were cut and analyzed for organic carbon 
(OC) and elemental carbon (EC) concentrations using OC/
EC Carbon Analyzer (Model: DRI 2001A, Atmoslytic Inc., 
Calabasas, CA). The analyzer is based on the principle of 
preferential oxidation of OC and EC. OC volatilizes at lower 
temperatures and in a nonoxidizing helium atmosphere. 
Hence, initially the sample is heated in pure helium at four 
different temperatures, i.e., 140, 280, 480, and 580 °C to 
estimate the OC components (OC1, OC2, OC3, and OC4). 
EC volatilizes by an oxidizer through combustion process; 
therefore, the sample is further heated in the atmosphere of 
98% helium and 2% oxygen at three different temperatures, 
i.e., 580 °C, 740 °C, and 840 °C to estimate the EC compo-
nents (EC1, EC2, and EC3). The detailed analytical proce-
dure is available in Chow et al. (2004) and reference therein. 
All the samples were analyzed in triplicate to estimate the 
repeatability error, and it was approximated to be 3–5%.

The estimation of water soluble inorganic components 
(WSICs)  (Li+,  Na+,  NH4

+,  K+,  Ca2+,  Mg2+,  F−,  Cl−, 
 NO3−, and  SO4

2−) were performed by extracting 5 × 5 cm2 
(of 20 × 25 cm2) of filter in deionized water (resistivity 
18.2 MΩ-cm), and it was ultrasonicated for 90 min. The 
extract was then filtered through 0.22 μm nylon membrane 
filters. The filterate was then transferred to polypropylene 
sample bottles and analyzed by using Ion Chromatograph 
(Model: DIONEX-ICS-3000, Sunnyvale, CA). The concen-
trations of anions were obtained by using an Ion Pac-AS11-
HC analytical column with a guard column, ASRS-300 
4-mm anion micro-membrane suppressor, 20 mM of sodium 
hydroxide (NaOH; 50% w/w) as eluent, and deionized water 
as regenerator. Concentrations of cations were estimated by 
using a guard column with a separation column, suppres-
sor CSRS-300, and 5 mM of methane sulfonic acid (MSA) 
as eluent.  Chromeleon® software was used to process the 
chromatograms, and data of chromatography were collected 
at 5 Hz. Repeatability error was measured using triplicate 
analysis of filters and observed to be approximately 3–7%. 
Comprehensive details about the analytical procedure, cali-
bration standards used, etc., in this study are available in 
our previous publication and reference therein (Sharma et al. 
2014a, b). The values of method detection limit (MDL) of 
analyzed  PM10 components has been reported in Table 1.
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Descriptions of Models

PMF

US EPA PMF (5.0) was employed in the present study to 
determine the sources of  PM10 and their contributions at the 
sampling sites. Comprehensive description and algorithms 
of PMF can be perceived through number of research papers 
(EPA PMF 5.0 user guide; Paatero and Tapper 1994; Paatero 
1999; Jain et al. 2017a, b). The obligatory characteristics of 
the model concomitant with the present study have been elu-
cidated in the supplementary information (“Appendix 1”).

The standard uncertainty estimation (uncertainty associ-
ated with the analyzed data set) was calculated using the 
given equation (as per EPA PMF 5.0 user guide):

 
MDL refers to mean detection limit and is calculated as 

three times of the standard deviation of the 10 replicates 
of blank analysis. Error fraction is computed by dividing 
the standard deviation of exposed filter analysis by the 
square root of the number of analyses. Furthermore, on the 
basis of signal-to-noise ratio criteria, those species display-
ing higher noise than signal were consigned with down 

(2)Uncertainity =

√

(Error fraction × concentration)2 + (0.5 × MDL)2

weighting factors (Jeong et al. 2017). In this study, species 
with less than 0.2 S/N ratios were excluded from analysis. 
Species with > 2 and between 0.2 to 2 S/N ratio represent 
strong and weak values (data quality), respectively. Species 
with weak data quality correspondingly contributes to the 
noise in the results (Sharma et al. 2016a, b). MDL values 
and  PM10 concentration of each location are summarized 
in Table 1. Additionally, calculated S/N ratios and regres-
sion coefficients (R2) between the measured and modeled 
values by the PMF model are also given in Table 1. The 
performance of the model was determined on the basis of 
model base run determination coefficient (R2) between the 
modeled and experimental concentration of  PM10, OC, EC, 
WSICs, and trace metals. In the present study, most of the 
chemical species were well reconstructed (Table 1), except 

for some of the trace elements. These results were within the 
range of those presented in many PMF studies (Beuck et al. 
2011; Cusack et al. 2013) for  PM10 mass reconstruction. 
Scaled residuals between − 3 to + 3 are obtained for all of 
the major components, and the value of Q robust is strictly 
identical to the value of Q true. It shows that no specific 
event is affecting the results and that the base run can be 
regarded as stable.

Table 1  The average concentrations of constituents of  PM10 (μg m−3) over IGP and coefficient of correlation (R2) between measured and mod-
elled concentrations along with S/N ratio in the base run of  PM10 and MDL (method detection limit)

Species Delhi Varanasi Kolkata

Average R2 S/N MDL Average R2 S/N MDL Average R2 S/N MDL

PM10 202.3 ± 74.3 0.86 6.6 – 206.2 ± 77.4 0.89 6.7 – 171.5 ± 38.5 0.82 5.4 –
OC 22.7 ± 7.4 0.64 2.0 0.87 16.9 ± 8.6 0.79 4.5 0.87 13.7 ± 5.3 0.81 5.4 0.87
EC 8.7 ± 3.9 0.70 2.6 0.38 7.3 ± 5.1 0.78 6.7 0.38 7.8 ± 4.0 0.80 8.0 0.38
SO4

2− 11.67 ± 3.7 0.74 5.9 0.23 10.7 ± 6.0 0.85 8.3 0.23 10.0 ± 2.9 0.69 8.6 0.23
NO3

− 10.6 ± 5.5 0.85 3.9 0.37 8.7 ± 6.6 0.92 8.6 0.37 6.5 ± 2.6 0.93 8.8 0.37
NH4

+ 5.2 ± 4.2 0.78 4.6 0.27 3.4 ± 4.1 0.95 6.8 0.27 7.0 ± 3.0 0.62 7.9 0.27
F− 0.54 ± 0.38 0.48 2.7 0.29 – – – – 0.85 ± 0.66 0.40 4.1 0.29
Na+ 3.51 ± 1.86 0.76 5.0 0.34 2.92 ± 0.94 0.86 9.4 0.34 5.40 ± 1.34 0.83 9.8 0.34
K+ 1.75 ± 0.74 0.85 2.3 0.64 1.69 ± 0.79 0.76 2.7 0.64 3.07 ± 1.92 0.90 2.7 0.64
Cl− 4.49 ± 3.49 0.68 4.3 0.26 5.84 ± 4.63 0.89 6.8 0.26 9.54 ± 3.41 0.79 9.0 0.26
Ca2+ 4.75 ± 1.19 0.79 9.5 0.31 3.67 ± 1.53 0.91 9.4 0.31 4.93 ± 2.52 0.85 9.8 0.31
Mg2+ 0.75 ± 0.21 0.92 4.4 0.18 0.61 ± 0.29 0.88 3.8 0.18 0.78 ± 0.19 0.63 5.4 0.18
Al 2.06 ± 0.86 0.88 8.9 0.18 2.10 ± 1.31 0.95 8.7 0.18 0.76 ± 0.57 0.74 5.8 0.18
Ti 0.09 ± 0.04 0.77 5.3 0.03 0.09 ± 0.12 0.99 4.1 0.03 – – –
Fe 0.60 ± 0.49 0.99 10.0 0.07 0.11 ± 0.08 0.93 2.4 0.07 0.43 ± 0.66 0.98 3.5 0.07
P 0.29 ± 0.18 0.99 10.0 0.02 0.11 ± 0.05 0.98 10.0 0.02 0.07 ± 0.05 0.97 10.0 0.02
S 1.98 ± 1.00 0.96 9.4 0.12 1.03 ± 0.70 0.94 7.8 0.12 0.74 ± 0.52 0.88 7.1 0.12
Zn 0.02 ± 0.01 0.74 0.6 0.06 – – – – 0.02 ± 0.01 0.58 0.7 0.06
B 2.25 ± 1.05 0.98 9.8 0.04 2.63 ± 1.50 0.92 10.0 0.04 2.57 ± 1.37 0.99 10.0 0.04
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The default “robust” mode of the PMF was applied to 
minimize the impact of extreme values. In PMF, the major 
challenge lies with small data sets (number of cases close 
to 50), where rotational ambiguity influences the solution 
significantly, thereby increasing its overall uncertainty. To 
resolve this issue, the latest version of PMF (i.e., PMF 5.0) 
allows handler to assess rotational ambiguity by providing 
advanced methods, such as displacement and bootstrap dis-
placement, whereas the prior version proffered only boot-
strapping tool. The combination of both bootstrapping and 
displacement tools help to assess rotational ambiguity as 
well as random errors. The determined factors might get 
swapped during displacement and bootstrap displacement 
run if the solution carries high rotational ambiguity. These 
factor swaps are displayed in diagnostic results. Moreover, 
the bootstrap displacement reveals the number of accepted 
resamples (Manousakas et al. 2017).

UNMIX

The UNMIX model is a multivariate analysis method, which 
takes the geometric approach to exploit the covariance of 
the data set and employs self-modeling curve resolution 
technique to determine the source profiles and source con-
tributions with nonnegativity constraints. The present study 
employs stand-alone US EPA UNMIX 6.0 version. Simpli-
fied graphical representation of UNMIX model was given by 
Henry (1997) and detailed algorithms can be referred from 
Song et al. (2006) and Jain et al. (2017a, b). Brief details 
and characteristics of the model associated with the present 
study have been elucidated in the Supplementary Informa-
tion (“Appendix 1”).

PCA‑APCS

PCA is a sophisticated technique to analyze the structure and 
patterns in the multivariate data sets. It transforms the large 
number of variables into smaller and possibly correlated sets 
of variables called principal components, which retains most 
of the variance in perceived variables. The detailed theo-
retical and mathematical information has been elucidated in 
many studies (García et al. 2006; Sharma et al. 2016b; Jain 
et al. 2017a, b) and brief details about the model have been 
given in the Supplementary Information (“Appendix 1”).

PCA-APCS was applied on the datasets of  PM10 of three 
receptor locations using software package SPSS statistics 
version 22.0 with 50 samples including 18 constituents/
species (OC, EC,  SO4

2−,  NH4
+,  NO3

−,  Na+,  Ca2+,  Mg2+, 
 K+,  Cl−, Al, Ti, Zn, Fe, S, P,  F−, and B) for Delhi region, 
45 samples with 16 constituents (OC, EC,  SO4

2−,  NH4
+, 

 NO3
−,  Na+,  Ca2+,  Mg2+,  K+,  Cl−, Al, Ti, Fe, S, P, and B) 

for Varanasi region and 54 samples with 17 species (OC, 
EC,  SO4

2−,  NH4
+,  NO3

−,  Na+,  Ca2+,  Mg2+,  K+,  Cl−, Al, Zn, 

Fe, S, P,  F−, and B) for Kolkata region. All variables were 
characterized and modified into normalized dimensionless 
form preceding statistical analysis. The lowest eigenvalue 
was confined to more than one for extracted factors, and 
the results were appraised in accordance with the Kaiser’s 
criteria. Kaiser–Meyer–Olkin (KMO) describes the suit-
ability of the data for factor analysis (sampling adequacy). 
It distributes the value between 0 to 1, designating values 
greater than 0.6 to be acceptable (Li et al. 2004). KMO val-
ues for the present analysis for Delhi, Varanasi, and Kolkata 
were 0.71, 0.68, and 0.70, respectively. Chemical variable 
with factor loadings greater than 0.5 (> half of the species 
affiliation) was utilized for source allocation (Kothai et al. 
2008). Varimax rotation is administered along with orthogo-
nal transformation to maximize the variance of squared load-
ings of the factors. It obviates the changing of total variance 
in the models and ensures the furnishing of maximal PCs 
having > 1 eigen values in the factor loading matrix.

Results and Discussion

PM10 Mass and Elemental Concentrations

The average concentration of  PM10 at Delhi, Varanasi, 
and Kolkata was found to range from 63.3–354.7 μg m−3, 
53.3–392.1 μg m−3, and 92.9–382.6 μg m−3 with annual aver-
age of 202.3 ± 74.3, 206.2 ± 77.4, and 171.5 ± 38.5 μg m−3, 
respectively (Table 1). Mass concentration of  PM10 and its 
chemical constituents measured at each location is reported 
in Table S1 (in the Supplementary Information) as a range 
and averaged values over the entire sampling duration and 
for each season. All the three sites, i.e., Delhi, Varanasi, 
and Kolkata, have recorded the highest average concentra-
tion of  PM10 during winters: Delhi (263.8 μg m−3), Vara-
nasi (290.5 μg m−3), and Kolkata (203.9 μg m−3), which 
could be attributed to increased anthropogenic activities, 
more stable atmosphere, and lower boundary layer height 
(Sharma et al. 2016b). Lowest average concentration of 
 PM10 was observed during monsoon season for Delhi 
(133.8 μg m−3) and Varanasi (148.1 μg m−3) but not for 
Kolkata. Kolkata, in the coastal region, observes intru-
sion of sea salt along with monsoonal rains that might have 
increased the  PM10 concentration in the region. Lowest aver-
age concentration of  PM10 at Kolkata was observed during 
the summer season (140.7 μg m−3). The average concen-
tration of  PM10 at all the sampling sites exceeds the pre-
scribed limit of National Ambient Air Quality Standards 
(NAAQS) (100 µg m−3 for 24 h and 60 µg m−3 for annual) 
of India. Similar studies about ambient  PM10 concentration 
over Delhi region by Perrino et al. (2011) (183.0 μg m−3), 
Sharma et al. (2003) (191.4 ± 45.5 μg m−3), Tiwari et al. 
(2013) (161.0 ± 80 μg m−3), and Sharma et  al. (2014a) 
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(191.4 ± 45.5  μg  m−3) have reported lower values than 
that recorded in the present study, whereas Kulshrestha 
et al. (2009) (219.0 ± 84 μg m−3), Mandal et al. (2014) 
(285.7 ± 26.3 μg m−3), Tiwari et al. (2012) (219 ± 84 μg m−3), 
Sharma et  al. (2014b) (213.1 ± 15.0  μg  m−3), and Jain 
et  al. (2017b) (249.7 ± 103.9  μg  m−3) reported higher 
values. For middle IGP region, Pandey et  al. (2013) 
at Lucknow (168.1 ± 29.1  μg  m−3), Murari et  al. 
(2015) (176.1 ± 85.0  μg  m−3), and Sen et  al. (2014) 
(139.6 ± 68.0 μg m−3) at Varanasi observed lower values 
of  PM10 compared with the contemporary study. For lower 
IGP region, Das et al. (2006) (303.8 ± 49.4 μg m−3) and 
Gupta et al. (2007) (288.9 ± 123.5 μg m−3) over Kolkata 
perceived much higher concentration of  PM10 as collated 
with the present study. The average concentrations and sea-
sonal variability of OC, EC, and WSICs of  PM10, as well as 
 PM10 concentration at Delhi, Varanasi, and Kolkata of IGP 
are discussed in detail in our previous paper and referenced 
therein (Sharma et al. 2016b).

Source Apportionment

In total, 18 species (OC, EC,  SO4
2−,  NH4

+,  NO3
−,  Na+, 

 Ca2+,  Mg2+,  K+,  Cl−, Al, Ti, Zn, Fe, S, P,  F−, and B) of 50 
 PM10 samples of Delhi, 16 species (OC, EC,  SO4

2−,  NH4
+, 

 NO3
−,  Na+,  Ca2+,  Mg2+,  K+,  Cl−, Al, Ti, Fe, S, P, and B) 

of 45  PM10 samples of Varanasi, and 17 species (OC, EC, 
 SO4

2−,  NH4
+,  NO3

−,  Na+,  Ca2+,  Mg2+,  K+,  Cl−, Al, Zn, Fe, 
S, P,  F−, and B) of 54  PM10 samples of Kolkata were ana-
lyzed and used as an input of PCA-APCS, UNMIX, and 
PMF models. The compendium of extracted sources of  PM10 
by applying these three receptor models for the monitoring 
sites is presented in Tables S2, S3, and S4 (in Supplemen-
tary Information) for Delhi, Varanasi, and Kolkata, respec-
tively. The average percent contribution of observed sources 
to  PM10 for the receptor sites is compiled and depicted in 
Fig. 2 and Table 2.

Fig. 2  Sources (SA: secondary aerosols; VE: vehicular emissions; 
SD: soil dust; BB: biomass burning; SMS: sodium and magnesium 
salt; FFC: Fossil fuel combustion; Ssulf: secondary sulphate; SN: 

secondary nitrate; CC: coal combustion) and their contributions (%) 
to  PM10 mass as calculated by the three receptor models
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PM10 Sources in Delhi

A total of 18 species were processed in the UNMIX model, 
where  PM10 was considered as total mass as well as norm 
species. According to the suggested exclusion given by the 
model, fluoride  (F−) was discarded. Solution’s diagnostic 
indicators were R2 = 0.89 and S/N = 2.37 (S/N ratio should 
be > 2), which were observed to be reconcilable with the rec-
ommendations. In PMF, robust mode is used to run the model 
to minimize the influence of extreme values on the result. To 
identify the optimal number of sources (factors), parameter 
of goodness of fit “Q” was estimated to make the solution lie 
in the F-PEAK range. The influence of outliers or extreme 
values is not controlled in true Q value but is minimized in 
robust Q value. The theoretical Q value of this study (Delhi 
region) was 900 (i.e., 50 × 18). For seven factor solutions, 
more than 95% of Q values were close to 900, obtained from 
incorporating 5% error constant while performing 100 runs. 
The diagnostic indicators manifest that the observed Q value 
was the global minimum, thus establishing the feasibility of 
seven factor solution (Jain et al. 2017b).

PMF The combined presence of nitrate  (NO3
−), sulfate 

 (SO4
2−), and ammonium  (NH4

+) in the major proportions 
signify the source 1 to be mixture of secondary nitrate (SN) 
and secondary sulfate (Ssulf). Secondary sulfate formed 
through photochemical reactions, favored by strong solar 
radiations and high temperature, whereas secondary nitrate is 
formed by  NOx oxidation, which is encouraged by low tem-
perature (Seinfeld and Pandis 2016). Principally  (NH4)2SO4 
and  NH4NO3 comprise secondary aerosols, procured from 
their gaseous precursors, i.e.,  NOx,  SO2, and  NH3. Second-

ary aerosol (SA) plays a significant role in the formation of 
fog (Jaiprakash et al. 2017). SA have major contribution in 
 PM10 mass over Delhi, which is approximately 25%. A com-
parable study on source apportionment of  PM10 over Delhi 
by Sharma et al. (2015) reported similar percent contribution 
of SA, i.e., 21%. A second source has been designated as 
vehicular emissions (VE), because it is rich in OC, EC, Zn, 
Al, and B. OC and EC credibly derived from motor vehi-
cle and traffic emissions (Pant and Harrison 2012; Jain et al. 
2017b). EC is primarily emanated from combustion sources 
and is profoundly used as a tracer for diesel exhaust (Yin 
et al. 2010). Combustion and vaporization of fuel and other 
solvents encompass the primary sources of OC (Ho et  al. 
2003). The abundance of Zn signifies the contribution from 
tire wear and two stroke engines (Zn is used as fuel addi-
tive) (Kothai et al. 2008). The presence of Al indicates the 
influences from wear and tear of brake lining and pistons 
(Srimuruganandam and Nagendra 2012). The PMF analysis 
indicated that VE were responsible for 13% of total  PM10 
emissions, which is in concordance with the previous stud-
ies that highlighted VE as a major source of  PM10 and has 
become a predicament for Delhi region (Sharma et al. 2015, 
2017; Jain et al. 2017a, b). Source 3 is inferred as soil/road 
dust (SD) due to high share of crustal elements that include 
Al, Ti, Fe,  Ca2+  Mg2+, and OC. The extensive range of crus-
tal elements (Al, Ca, Si, Ti, Mg, Pb, Zn, Na, and K) is being 
employed as marker species for soil/road dust source in India 
(Balachandran et al. 2000; Khillare et al. 2004; Banerjee et al. 
2015). These crustal elements represent significant integrant 
of soil and road dust, which majorly contribute to coarser PM 
(Jaeckels et al. 2007; Begum et al. 2011). The occurrence of 
Fe with OC is suggested marker for road dust (Gupta et al. 

Table 2  Comparison of average source contributions (percentage) to  PM10 mass concentration among the PCA/APCS, UNMIX, and PMF mod-
els

Delhi Varanasi Kolkata

Identified sources PCA/APCS UNMIX PMF PCA/APCS UNMIX PMF PCA/APCS UNMIX PMF

Soil dust 27 – 16 31 15 21 24 22 15
Vehicular emissions 22 22 13 – 18 18 – 22 18
Industrial emissions – – 11 – – 9 – – 15
Secondary aerosols 28 23 25 – 40 20 – – –
Biomass burning – – – 20 – 19 – 24 –
Sodium and magnesium salt 5 – 4 5 6 5 – – 6
Fossil fuel combustion – – 14 – – 8 – – –
Biomass burning +  coal combustion 18 28 17 – 21 –  20 – 21
Secondary aerosols + sodium and magnesium salt – 27 – – 32.2 – – 32 –
Secondary aerosols + vehicular emissions – – – 44 – – – – –
Secondary nitrate – – – – – – 7 12
Secondary sulfate – – – – – – – – 13
Vehicular emissions + secondary sulfate – – – – – – 32 – –
Industrial emissions + sodium and magnesium salt – – – – – – 17 – –
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2007; Banerjee et al. 2015). PMF results showed the contri-
butions from crustal/soil/road dust to  PM10 mass to be 16%. 
Source 4 is identified as biomass burning (BB) source due to 
the dominant contribution of  K+,  F−, and  Cl−. Ionic species 
of potassium  (K+) are frequently used as a marker of biomass 
burning besides levoglucosan in India and Europe (Robinson 
et al. 2006; Shridhar et al. 2010). In India, biomass or refuse 
burning is an amalgamation of cow dung, fuel wood, and 
post-harvest agricultural residue burning, including wild-
fires. The abundance of  Cl− indicates the intrusion from coal 
combustion (CC) and wood-burning sources (Pant and Har-
rison 2012). The presence of  NH4

+ along with  K+ and  SO4
2− 

with  Cl− confirms the emissions from biomass burning and 
coal combustion respectively (Khare and Baruah 2010; Jain 
et al. 2017b). Furthermore, the significant contribution of the 
EC in this source also indicates the contribution of biomass 
burning to EC, because the  K+/EC ratio for Delhi region in 
the present study was 0.20, which indicates the emissions 
from biomass burning  (K+/EC ratios more than zero signi-
fies BB source) (Andreae and Merlet 2001). BB contributes 
approximately 17% to  PM10 mass in the present study. Source 
5 represents the sodium and magnesium salt (SMS) source 
(can be called sea salt) due to the abundance of precursors, 
such as  Na+ and  Mg2+. The use of these markers are often 
baffling, because they can be originated from both sea salt 
and crustal type sources (Jain et  al. 2017b). The sampling 
site in Delhi is not surrounded by coastal area, therefore 
referring this contribution from sodium and magnesium salt 
source would be more appropriate than sea salt. In literature, 
markers, such as  Na+,  Mg2+,  Cl−,  Ca2+, and  K+, have been 
used for identifying marine aerosols (Kumar et  al. 2001; 
Kothai et al. 2008; Sharma et al. 2014b). This source type 
contributes approximately 4% to  PM10 mass in the present 
study. In Source 6, the presence of tracers, such as  Cl−, Al, 
Zn, and  SO4

2−, suggest the source of fossil fuel combustion. 
 Cl− along with  SO4

2− have been widely used as a marker 
of coal combustion (Pant and Harrison 2012; Sharma et al. 
2016a). Tracers, such as Zn, Se, Te, and As, have been used 
internationally to signify coal and fuel burning (Lee et  al. 
2002; Gupta et  al. 2007). PMF analysis revealed that fos-
sil fuel burning has contributed 14% to  PM10 mass over the 
Delhi region, which is bounded by three coal-fired thermal 
power plants. The exceptional abundance of Fe in source 7 
indicates the emissions from iron industries. Several small- 
and medium-scale industries of metal processing and steel 
strip rolling in and around Delhi along with steel ingots 
manufacturing industry in neighboring states (Haryana) are 
potentially contributing Fe at the sampling location. Iron 
source contributes approximately 11% to  PM10 mass in the 
present study.

UNMIX The presence of high concentrations of  NH4
+, 

 SO4
2−, and  NO3

− mark the source 1 to be of mixture of 

secondary nitrate and secondary sulfate. UNMIX analysis 
showed that secondary aerosol has contributed 23% to  PM10 
mass. Source 2 was identified as vehicular exhaust emis-
sions due to  the presence of OC and EC. UNMIX analy-
sis revealed that vehicular emission has contributed 22% to 
 PM10 mass. Source 3 is designated as mixed type source 
combining precursors of soil dust and sodium and magne-
sium salt. Higher concentrations of Al, Ti, Fe, S,  Na+, and 
 Mg2+ indicate the same. Higher concentrations of Al, Ti, 
and Fe suggest it to be source of soil/road dust, whereas 
abundances of  Na+ and  Mg2+ indicate the intrusion from the 
source of sodium and magnesium salts or sea salt. However, 
 Mg2+ is believed to be emitted from soil dust also, which 
creates the ambiguity in interpreting the sources (Pant and 
Harrison 2012). UNMIX analysis shows 27% contribu-
tion of this mixed type source to  PM10 in the present study. 
Source 4 has a high concentrations of  K+,  Cl−,  SO4

2−, and 
 Ca2+ indicate the mixed source of biomass burning and coal 
burning.  Cl− along with  SO4

2− have been used as a tracer 
for coal combustion while  K+ used as a tracer for biomass 
burning, including cow dung and agricultural residue burn-
ing (Khare and Baruah 2010; Shridhar et al. 2010). UNMIX 
analysis shows 28% contribution of this mixed type source 
to  PM10 in the present study.

PCA‑APCS Source 1 is dominated by the key markers of sec-
ondary aerosols, i.e.,  NH4

+,  SO4
2−, and  NO3

−. It explained 
23.6% of the variance and contributed approximately 28% 
to  PM10 mass in the present study. Source 2 is rich in OC, 
EC, Zn, and B, which are considered markers for vehicle 
emissions. This factor explained 17.8% of the variance and 
contributed approximately 22% to  PM10 mass in the present 
study. Source 3 has high concentrations of Al, Ti, Fe, and 
P, which indicate the source of soil/road dust. This factor 
explained 15.7% of the variance and contributed approxi-
mately 27% to  PM10 mass in the present study. Source 4 is 
characterized as biomass burning, wood burning, coal com-
bustion, and vegetative burning source due to the presence 
of  K+ and  Cl−. This factor explained 12.7% of the variance 
and contributed approximately 18% to  PM10 mass in the 
present study. Source 5 is dominated by the  Na+ and  Mg2+ 
precursors, suggesting the source of sodium and magnesium 
salt. This factor explained 8% of the variance and contrib-
uted approximately 5% to  PM10 mass in the present study.

PM10 Sources in Varanasi

Total 16 species were processed in the UNMIX model, 
where  PM10 was considered as total mass as well as norm 
species. Solution’s diagnostic indicators were R2 = 0.93 and 
S/N = 2.05, which were observed to be reconcilable with the 
recommendations. In PMF, to identify the optimal number 
of sources (factors), parameter of goodness of fit “Q” was 



123Archives of Environmental Contamination and Toxicology (2019) 76:114–128 

1 3

estimated to make the solution lie in FPEAK range. The 
theoretical Q value for this study (Varanasi region) was 720 
(i.e., 45 × 16). For seven factor solutions, more than 95% of 
Q values were close to 720, obtained from incorporating 6% 
error constant while performing 100 runs. The diagnostic 
indicators manifest that the observed Q value was the global 
minimum, thus establishing the feasibility of seven factor 
solution (Jain et al. 2017b).

PMF Source 1 is characterized as SA due to the presence of 
higher share of tracers of SA, i.e.,  NO3

−,  SO4
2−, and  NH4

+. 
PMF analysis shows that SA has contributed approximately 
20% to  PM10 mass concentration. Source 2 is identified as 
VE due to the dominant share of OC and EC, which are key 
markers for traffic emissions (Belis et al. 2013). VE contrib-
uted approximately 18% to  PM10 mass in the present study as 
receptor site being bounded by the heavy traffic areas; hence, 
VE is a significant contributor to PM pollution. Source 3 is 
characterized as soil/road dust due to the abundant presence 
of crustal elements, i.e., Al, Ti, Fe, S, and B. SD has con-
tributed approximately 21% of aerosol mass in  PM10 at the 
sampling site. Source 4 is characterized as BB source due to 
maximum share of  K+.  K+ is the inorganic tracer for biomass 
burning sources, including vegetative residue burning and 
wildfire (Guttikunda et al. 2013). PMF analysis revealed the 
contribution of BB to  PM10 mass was 19%. The higher per-
cent share of  Na+,  Mg2+, and  Ca2+ distinguished the source 
5 to be of sodium or magnesium salt or can be referred as 
sea salt (Raman and Ramachandran 2010). However, these 
markers of sea salt source, such as  Mg2+ and  Ca2+, can pos-
sibly originate from crustal emissions. Moreover, Varanasi 
is a noncoastal region, therefore mentioning it as sodium 
and magnesium salt source would be more accurate than sea 
salt. SMS accounts 5% of  PM10 mass in the present study. 
Source 6 represents emissions from coal combustion due to 
the dominance of markers, such as  Cl−, along with the pres-
ence of  SO4

2−, Fe, and Al indicate possible emissions from 
coal combustion (Sharma et al. 2016b). PMF results showed 
that CC contributes approximately 8% to total  PM10 mass. 
The exceptionally high share of Ti in source 7 might have 
been coming from titanium-based industry. Many small- 
and medium-scale pulp and paper factories and handicraft 
industries in and around Varanasi may have contributed Ti 
to the receptor site. IE has contributed approximately 9% of 
aerosol mass in total  PM10 mass in this study.

UNMIX Source 1 is characterized by high concentrations of 
SA markers, i.e.,  NH4

+,  NO3
−, and  SO4

2−. UNMIX analy-
sis showed the contribution of SA to  PM10 mass was 40%. 
Source 2 represents the vehicular emission source due to 
high concentration of OC and EC. VE has contributed 18% 
to  PM10 mass in the present study. Source 3 is dominated 
by crustal elements, i.e., Al, Ti, Fe, P, S, and  Ca2+, indicat-

ing the source of soil/road dust. SD has contributed 15% to 
the total mass of  PM10 as identified by UNMIX analysis. 
Source 4 has a high concentration of  K+ and  Cl−, suggesting 
the mixed source of biomass burning and coal combustion. 
Significant contributions of OC with  K+ and  SO4

2− with  Cl− 
confirm the presence of biomass burning and coal burning 
sources (Chakraborty and Gupta 2010; Pachauri et al. 2013). 
BB accounts for 21% of  PM10 mass concentration in the 
analysis done by UNMIX model. Source 5 is characterized 
due to high concentrations of  Na+ and  Mg2+, which suggests 
sodium and magnesium salt source type. It accounts for 6% 
of  PM10 mass concentration in the present study.

PCA‑APCS Source 1 is observed to be a mixed type source 
of SA and VE with higher concentrations of key markers of 
SA, i.e.,  NO3

−,  SO4
2−, and  NH4

+ along with tracers of VE, 
i.e., OC and EC. This mixed type source explained 34.3% 
variance and contributed approximately 44% to  PM10 mass 
concentration. Source 2 is characterized by higher share of 
crustal elements, i.e., Al, Ti, Fe, P, B, and  Ca2+, indicating 
the source of soil/road dust. SD source explained the 21.3% 
variance and accounted 31% of total  PM10 mass concentra-
tion in PCA analysis. Source 3 has dominant tracers for bio-
mass burning and coal burning, i.e.,  K+ and  Cl− respectively. 
The presence of OC with  K+ and  SO4

2− with  Cl− assert the 
BB and CC source type, respectively. PCA analysis revealed 
the contribution of this source type to  PM10 mass concen-
tration was 20%. Source 4 is identified as sodium and mag-
nesium salt source due to higher concentration of  Na+ and 
 Mg2+. This factor contributed approximately 5% to  PM10 
mass in the present study.

PM10 Sources in Kolkata

Total 17 species were processed in the UNMIX model, 
where  PM10 was considered as total mass concentration as 
well as norm species. According to the suggested exclu-
sion given by the model, species with more than 50% of 
the specific variance (SV) or variance due to error should 
be excluded from further statistical analysis. Accordingly, 
UNMIX discarded calcium  (Ca2+) from further analy-
sis. Solution’s diagnostic indicators were R2 = 0.79 and 
S/N = 2.50, which were observed to be reconcilable with the 
recommendations. In PMF, to identify the optimal number 
of sources (factors), parameter of goodness of fit “Q” was 
estimated to make the solution lie in F-PEAK range. The 
theoretical Q value for this study (Kolkata region) was 918 
(i.e., 54 × 17). For seven factor solutions, more than 95% of 
Q values were close to 918, obtained from incorporating 9% 
error constant while performing 100 runs. The diagnostic 
indicators manifest that the observed Q value was the global 
minimum, thus establishing the feasibility of seven factor 
solution (Jain et al. 2017b).
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PMF The abundance of S,  SO4
2− with  NH4

+ in source 1 
mark the source of secondary sulfate (SSulf). SSulf being 
in the form of  (NH4)2SO4, formed from its gaseous precur-
sors, i.e.,  SO2 and  NH3, through photochemical reactions, 
which is further favored by strong solar radiations and high 
temperature (Saraswati et al. 2017). Moreover, high relative 
humidity accelerates its dry conversion (Song et al. 2006). 
During the summer season, the high concentration of sec-
ondary sulfate and ammonium could form higher share 
of  PM10 (Zhang et  al. 2013). In India, sulfate has been 
employed as a tracer for wood burning and coal combus-
tion (probably coal fired power plants), whereas ammonium 
has been attributed to agricultural and industrial activities 
(Pant and Harrison 2012). PMF analysis showed the con-
tribution of SSulf to  PM10 mass was approximately 13%. 
The occurrence of a higher share of  NO3

− and  NH4
+ identi-

fies source 2 to be of secondary nitrate. SN is in the form 
of  NH4NO3, formed from its gaseous precursors, i.e.,  NOx 
and  NH4

+, through  NOx oxidation, which is encouraged by 
low temperature (Li et al. 2004).  NOx is primarily emitted 
from diesel and gasoline engines as well as electricity gen-
erating plants (Song et al. 2006). SN is semivolatile at high 
temperatures, therefore, generally  has high concentrations 
during the winter season. PMF analysis revealed that SN 
contributes approximately 12% to total  PM10 mass concen-
tration. Source 3 has been designated as vehicular emis-
sions, because it is rich in OC, EC, Zn, and B. OC and EC 
are attributed to motor vehicle and traffic emissions. OC is 
majorly emitted through gasoline engines, whereas EC is 
chiefly produced from diesel exhausts (Sharma et al. 2018a, 
b; Karar and Gupta 2007). PMF results showed the contri-
bution of VE in  PM10 mass was 18%. Source 4 is charac-
terized as soil/road dust due to the abundant presence of 
crustal elements, i.e., Al, Fe, S, and P. SD has contributed 
approximately 15% of aerosol mass concentration in  PM10 
at the sampling site. Source 5 has high concentrations of  K+, 
OC, and  Cl−, suggesting the mixed source of biomass burn-
ing and coal combustion. Significant contribution of OC 
with  K+ confirms the presence of biomass burning while 
 Cl− possibly coming from coal/fuel combustion. A similar 
study by Pachauri et al. (2013) reported that the increased 
biomass burning emissions could attribute to significant 
correlation between  K+ and OC. The  K+/EC ratio for the 
Kolkata region in the present study was observed as 0.36, 
which suggests the presence of BB source in EC (Cesari 
et al. 2016) and the significant contribution of the EC in this 
source confirms the same. BB accounts for 21% of  PM10 
mass concentration in the analysis done by PMF model. 
The higher percent share of  Na+ and  Mg2+ distinguished 
source 6 to be sodium or magnesium salt, which can be 
referred to as sea salt. A significant share of  Cl− also sug-
gests the source to be sea salt. Because Kolkata is a coastal 
city, intrusion from sea salt spray to the receptor location is 

more obvious. SMS accounts 6% of  PM10 mass concentra-
tion in the present study. The exceptionally high share of Zn 
in source 7 might have been coming from zinc-based indus-
tries. Several small- and medium-scale industries of metal 
processing, galvanizing, electroplating, and metallurgy in 
and around Kolkata are potentially contributing Zn at the 
sampling location. Zinc source contributes approximately 
15% to  PM10 mass concentration in the present study.

UNMIX Source 1 is observed to be a mixed type source of 
SA and SMS with higher concentrations of key markers of 
SA, i.e.,  NO3

−,  SO4
2−, and  NH4

+, along with tracers of the 
SMS or sea salt, i.e.,  Na+,  Mg2+, and  Cl−. UNMIX analysis 
showed the contribution of this mixed type source to  PM10 
mass concentration was 32%. Source 2 represents the vehic-
ular emission source due to high concentration of OC and 
EC. VE has contributed 22% to  PM10 mass concentration in 
the present study. Source 3 is dominated by crustal elements, 
i.e., Al, Fe, P, S, and B, indicating the source of soil/road 
dust. SD has contributed 22% to the total mass concentration 
of  PM10 as identified by UNMIX analysis. Source 4 has a 
high concentration of  K+ and OC, suggesting the source of 
biomass burning. BB accounts for 24% of  PM10 mass con-
centration in the analysis done by the UNMIX model.

PCA‑APCS Source 1 is observed to be a mixed type source 
of VE and SSulf with a higher concentration of key mark-
ers of VE, i.e., OC and EC along with tracers of SSulf, i.e., 
 SO4

2−,  NH4
+, and S. PCA analysis showed the contribu-

tion of this mixed-type source to  PM10 mass concentration 
was 32% and explained 21.5% variance. Source 2 is identi-
fied as a secondary nitrate source due to higher concentra-
tion of  NO3

− and  NH4
+. This factor explained 6.9% of the 

variance and contributed approximately 7% to  PM10 mass 
concentration in the present study. Source 3 is character-
ized by a higher share of crustal elements, i.e., Al, Fe, S, 
P, B, and  Ca2+, indicating the source of soil/road dust. SD 
source explained the 21.3% variance and accounted 24% of 
total  PM10 mass in PCA analysis. Source 4 has dominant 
tracers for biomass burning and coal burning, i.e.,  K+ and 
 Cl−, respectively. PCA analysis revealed the contribution of 
this source type to  PM10 mass concentration was 20% and 
explained variance was 18.8%. Source 5 has a higher con-
centration of key markers, such as  Na+ and  Mg2+, with the 
presence of  Cl− indicating the source of sodium and mag-
nesium salt or sea salt. Also, an exceedingly high concen-
tration of Zn is present in this source, potentially coming 
from zinc-based industries (metal processing, galvanizing, 
electroplating, and metallurgy) in Kolkata, asserting that 
this factor to be a mixed-type source of SMS and IE. PCA 
analysis revealed the contribution of this source type to 
 PM10 mass concentration was 17%, and the explained vari-
ance was 13.3%.
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Model Comparisons

The present work intends to effectuate an intercomparison 
of  PM10 source apportionment results observed at three 
receptor sites of IGP: Delhi (upper IGP), Varanasi (middle 
IGP), and Kolkata (lower IGP) using three receptor models 
(Table 2). The intercomparison were designed to investi-
gate their performances in source identification, quanti-
fication of source contribution, and the extent of acqui-
escence between them. PMF agreed on seven individual 
sources (roughly similar source type) for all sampling sites 
based on the availability of tracer species, whereas PCA-
APCS and UNMIX varied between four to five sources 
(including mixed type) for all measurement sites. The 
three applied models agreed on the similar source types 
but varied source numbers and contributions for the sam-
pling locations.

For Delhi region, all three models identified domi-
nant sources contributing to  PM10, i.e., SA, SD, VE, and 
BB. However, PMF identified two additional but crucial 
sources, i.e., IE and FFC. Furthermore, the quantification 
of the contribution of different sources to  PM10 varied 
for the different models. For all regions, PCA-APCS and 
UNMIX over quantifies the contribution due to the limited 
number of source identification, whereas PMF effectively 
distributes the tracer species to corresponding sources and 
thereby offers a precise percent contribution of different 
sources. Similarly, for Varanasi and Kolkata regions, the 
identified major sources by three models were SA, VE, 
BB, and SD. PMF revealed two more sources, i.e., IE and 
FFC in Varanasi and was able to differentiate between sec-
ondary sulphate and secondary nitrate sources in Kolkata, 
which other models failed to do. Moreover, PCA-APCS 
and UNMIX results create ambiguity in source iden-
tification by mixing precursors of two or more sources 
(mixed-type source), whereas PMF restraints mixing of 
two source types in single factor and thus identified indi-
vidual sources. Different studies on the comparison of 
source apportionment results furnished by applying dif-
ferent models on the same data sets agreed that the con-
tribution and number of sources of PM as analysed by 
different receptor models may be different (Favez et al. 
2010; Amato et al. 2009; Contini et al. 2012; Cesari et al. 
2016; Sharma et al. 2016b; Jain et al. 2017a, b). The vari-
ations in the results arise due to incorporation of differ-
ent theoretical approaches and procedures in the models 
used for source apportionment. The variations between the 
results of three applied models for the sampling sites and 
their comparative source profiles have been well illustrated 
in Figs. S1, S2, and S3 for Delhi, Varanasi, and Kolkata 
respectively (in Supplementary information).

PCA-APCS has basic analytic method that generalizes 
the original data set based on statistical affiliation of data 

set (Thurston and Spengler 1985; Banerjee et al. 2015). 
UNMIX effectively differentiates the significant sources, 
but is incompetent in estimating weaker sources (Belis 
et al. 2013). UNMIX applies self-modeling curve resolu-
tion technique, whereas PCA-APCS employs orthogonal 
linear transformation to derive considerable factors. Both 
PCA-APCS and UNMIX cannot process data with miss-
ing as well as below detection level values and have no 
provision of externally incorporating uncertainties in the 
measurements as well as in the model (Song et al. 2006). 
Conversely, PMF implements point-by-point least squares 
minimization technique, which allows the direct compari-
son of untransformed profile to input matrix. It excludes 
negative entries and deals with the below minimum detec-
tion level values. The results of the uncertainty (BS and 
DISP) tools as provided by PMF 5.0 are documented in 
Table S5, S6, and S7 (in Supplementary information) for 
three sampling sites: i.e., Delhi, Varanasi, and Kolkata 
respectively. For Delhi region, sources, such as IE and 
SMS, have high uncertainties, whereas the rotational 
tools indicate stable results for SA, VE, and BB sources. 
Uncertainty tools suggested steady results for VE and BB 
sources while darting results for SD source in Varanasi 
region. For Kolkata region, SD shows high uncertainty, 
whereas VE and SMS sources show lower uncertainties. 
PMF and UNMIX employs nonnegative restrains unlike 
PCA-APCS; however, the combination of APCS with PCA 
minimizes the reconstructed concentration matrix error 
(Chan and Mozurkewich 2007). PMF has an additional 
feature of graphical representation of source contributions 
on a daily basis (Ogundele et al. 2016).

Conclusions

The present work focuses on the application of differ-
ent receptor models, including PCA-APCS, UNMIX, and 
PMF, on the data sets of three different sampling locations 
of IGP region, i.e., Delhi, Varanasi, and Kolkata of India 
to obtain the mutually validated outputs and results. The 
study attempts to intercompare the receptor models, majorly 
focusing on identification of sources, quantification of con-
tribution of sources to  PM10, the precision of the results, and 
furnishes the following points.

• The arithmetic mean concentration of  PM10 at Delhi, 
Varanasi, and Kolkata was found to range from 
63.3–354.7  μg  m−3, 53.3–392.1  μg  m−3, and 92.9–
382.6 μg m−3 with annual average of 202.3 ± 74.3 μg m−3, 
206.2 ± 77.4 μg m−3, and 171.5 ± 38.5 μg m−3, respec-
tively. Maximum concentration of  PM10 in Delhi, Vara-
nasi, and Kolkata was observed during the winter season.
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• The three applied models agreed on similar source, 
although different source numbers and percent contri-
bution; the majority are SD, SA, VE, and BB for Delhi 
region. PCA/APCS extracted five sources of  PM10 [SA, 
SD, VE, BB + CC, and SMS], whereas UNMIX model 
identified four sources of  PM10 [mixed type (SS + SD), 
mixed type (BB + CC), SA, and BB]. PMF model 
revealed seven different sources of  PM10 [SA, SD, VE, 
mixed type (BB + CC), FFC, IE, and SMS].

• For Varanasi region, the identified sources by PMF 
were SA, SD, VE, BB, IE, FFC, and SMS, whereas 
PCA-APCS and UNMIX resolved four and five source 
types, respectively, that include mixed type [SA + VE, 
BB, SD, and SMS] as resolved by PCA-APCS while SA, 
VE, BB + CC, SD, and SMS were revealed by UNMIX. 
Major sources for the Kolkata region as identified by 
three models were: PMF identified seven different 
sources, i.e., secondary sulphate, SN, SD, VE, BB + CC, 
IE, and SMS. UNMIX identified four sources, i.e., mixed 
type (SA + SMS), VE, SD, and BB. PCA-APCS distin-
guished five sources, i.e., mixed type (VE + Ssulf), mixed 
type (SMS + IE), SD, mixed type (BB + CC), and SN.

• The present study aids in enriching scientific auxiliary of 
policymakers and stakeholders and help them to under-
stand the attributes of respirable  PM10 and their dominant 
source regions. The effective strategies to be presented 
to the policy makers to devise laws that can be formu-
lated. A well-defined objective of this research will be to 
upgrade emanation control strategies, to enhance general 
well-being, and to improve the overall quality of ambient 
air.
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