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ABSTRACT: In this work, we report copper bromide (CuBr) as an efficient, inexpensive, and solution-
processable hole transport layer (HTL) for organic solar cells (OSCs) for the first time. To examine the
effectiveness of the material in general, three different solvents such as acetonitrile (MeCN), dimethyl
sulfoxide (DMSO), and dimethylformamide (DMF) are used for solution-processing thin-film
deposition of CuBr. CuBr thin films deposited from different solvents show high transparency and no
significant difference has been observed in absorption in the visible and near-IR range, whereas a slight
difference has been found in the near-UV range by changing the solvents. Furthermore, two most
studied combinations of the active layer such as PTB7/PC,;;BM and PCDTBT:/PC,;BM are used for
device fabrication with geometry of ITO/CuBr(HTL) active layer/Al. By using CuBr as a HTL in
OSCs, the power conversion efficiencies (PCEs) have been achieved to up to 5.16 and 4.72% with
PTB7/PC,;BM and PCDTBT/PC,;BM active layers, respectively. The CuBr film from DMF solvent
shows highest PCE as compared to films deposited from DMSO and MeCN solvents. Different solvents
used for HTL deposition have a major effect on the fill factor (FF), while very little difference on open
circuit voltage (V,.) and short circuit current (J,.) has been observed. It may be mentioned here that a
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small difference of device parameters (PCE, FF, J,, and V) has been observed in the devices using the HTL deposited from
DMEF and DMSO solvents, whereas a significant difference of the device parameters has been found in devices using the HTL

from MeCN solvent.

1. INTRODUCTION

Solution-processable organic solar cells (OSCs) have been
widely studied because of their easy fabrication process, cost-
effectiveness, light weight, flexibility, and large area as well as
continuous improvement in their performance by the use of
new materials and device architectures."” These cells based on
a bulk heterojunction concept have been fabricated with five
different components such as indium tin oxide as an anode
electrode, hole transport layer (HTL), active layer (donor/
acceptor), electron transport layer, and low work function
(WF) metals used as a cathode electrode. It is a well-known
fact that the performance of OSCs is highly dependent on the
interface between the conductive electrode (anode or cathode)
and active layer.”* An interface layer, namely, HTL is inserted
between the anode electrode and active layer to improve the
extraction and collection of charge carriers as well as stability
and performance of the devices. A wide range of materials were
used as HTLs in OSCs, out of which solution-processable
materials are the most attractive choice because of cost-
effectiveness and easy fabrication process. Poly(3,4-ethyl-
enedioxythiophene) /poly(styrenesulfonate) (PEDOT/PSS) is
a well-known and most widely used solution-processable HTL
material in the field of OSCs because of its high conductivity,
transparency, and suitable WF.”® While because of the acidic
and hygroscopic nature of PSS, it is a major cause of device
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degradation and stability.”® To overcome this problem, a series
of new organic and inorganic alternative HTL materials have
been developed and investigated as a replacement of PEDOT/
PSS such as PSS-free PEDOT,”™"? small molecules, graphene
oxide,"® carbon nanotubes,'* polyaniline,15 and transition-
metal oxides'®'” (V,05, MoQ,, NiO, etc.). The transition-
metal oxides have high air stability and optical transparency
but insoluble in most of the common organic solvents. Because
of solubility issue, these inorganic materials are usually
deposited by vacuum deposition techniques,'® which is an
incompatible, expensive, and more complicated procedure with
the concept of cost-effective large-area OSC fabrication. To
overcome the issue of vacuum deposition of inorganic HTLs,
significant efforts have been studied for the development of
solution-processable materials. Consequently, solution-pro-
cessing methods have been reported by using different
materials such as inorganic precursors,” nanoparticles,”’
colloidal particles,21 and so forth. Indeed, several solution-
processable metal oxides, such as CuO,,”* MoO,,” > ReO,,*°
v0,,””** Ni0,***° $n0,*" WO,,>* and RuO,’* have been
reported for relatively stable OSCs. Likely, these materials have
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issue on relatively poor solubility, required specific solvents,
toxicity, and shortage, which limits their possible commercial
applications. Therefore, an alternative is required to develop a
new cost-effective and efficient solution-processable HTL for
OSCs. In particular, high solubility and earth-abundant HTL
materials may be promising candidates for cost-effective
photovoltaic applications.

Recently, a new series of copper-based materials such as
copper iodide (Cul) and copper thiocyanate (CuSCN) have
been introduced as solution-processable, robust, and highly
transparent HTL materials for efficient OSCs.** Indeed,
CuSCN is an excellent solution-processable HTL for OSCs
reported in many studies,”” ™" but solubility of CuSCN in
nasty solvents (diisopropyl sulfide) has limited its general
applications. Solution-processable Cul has also been reported
in the literature®® ** as a HTL in OSCs, while most of the
studies have reported on poly(3-hexylthiophene)/[6,6]-
phenylCg;-butric acid methyl ester (P3HT/PC¢;BM)**-based
OSCs as a replacement of PEDOT/PSS.*** Very recently,
Zhang et al. reported a thermal deposition of combination of
CuBr, and MoOj; as a HTL of inverted-type polymeric solar
cells." Kim et al. reported the templating effects on the growth
of the organic molecules by using the thermal deposition CuCl,
CuBr, and Cul, possessing different lattice spacing by thermal
deposition.” Zhao et al. used CuBr salt to enhance the
conductivity of PEDOT/PSS and used for OSCs based on
PCDTBT/PC,;BM.** With respect to the transition metal-
based HTL on OSCs, practically nothing is known about
solution-processable CuBr as a HTL in OSCs. It is noteworthy
to mention that Miillen-Buschbaum and co-workers reported
that the influence of the solvents on the thin-film morphology
and structure should be resolvable by volume-sensitive
methods.”” They were extensively investigated by the effect
of solvent on the morphology and volume of the thin film for
OSCs and vertical and lateral phase separation have been
found during spin-coating and annealing temperature depend-
ing on the solvent.*” Furthermore, the effects of solvent on the
interface and active layer in OSCs have also been reported in
several publications.*®

Here, for the first time, we have reported a solution-
processable CuBr as an eflicient, inexpensive, and solution-
processable HTL for OSCs. The effectiveness of the material
was examined by using three different solvents [acetonitrile
(MeCN), dimethyl sulfoxide (DMSO), and dimethylforma-
mide (DMF)] for solution-processing thin-film deposition.
The CuBr thin films deposited from different solvents were
characterized by UV—vis spectroscopy and atomic force
microscopy (AFM). For better understanding, two most
studied combinations of active layers such as PTB7/PC, BM
and PCDTBT/PC,;BM were used for device fabrication with
the device geometry of ITO/CuBr (HTL)/active layer/Al

2. RESULTS AND DISCUSSION

2.1. Optical Measurement. Absorption spectra of
solution-processed CuBr films in different solvents were
performed on quartz substrates to understand the absorption
in the range of the solar spectrum. CuBr films exhibit the
absorption in the UV region (around <500 nm) as shown in
Figure la. There is no significant difference observed in
absorption spectra in the visible and near-IR range, whereas a
slight difference has been found in the near-UV range by
changing the solvents because solvents do not change the
optical properties but change the morphology of the films.
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Figure 1. (a) Absorption and (b) transmission spectra of CuBr thin
film from different solvents.

Therefore, it is clear that the CuBr films show lower parasitic
absorption which makes them efficient HTLs for OSCs to
further improve the power conversion efficiency (PCE).

Similarly, transmission spectra of CuBr films deposited with
different solvents on quartz substrates are shown in Figure 1b.
All these films deposited in different solvents are quite similar
and show high transparency in the range of 300—1100 nm.
CuBr films show high transparency around ~87%, which was
comparable or even better compared to PEDOT/PSS, Cul,
CuSCN, and other transition-metal oxides. The transmittance
of the CuBr films reduces slightly in the UV region (>300 nm).
High transmittance of CuBr (HTL) films makes it a potential
candidate for OSCs.

2.2. Computational Results. Energy-level alignments of
the materials used for photovoltaic application play a very
crucial role in V,, J,., excitons dissociation, charge transport,
and collection as well as on the device performance. Especially,
the work function of the HTL has a potential role on charge
transport and collection. The energy levels of optimized
materials (see Supporting Information) such as CuBr along
with Cul and CuSCN were calculated at the B3LYP/3-21G
level of theory. It is notable that, in contrast to many ab initio
methods (such as MP2, CISD, CCSD, etc.), the B3LYP level is
always well acceptable for the predication of energy levels. The
calculated highest occupied molecular orbital (HOMO),
lowest unoccupied molecular orbital (LUMO), HOMO-
LUMO gap, and bond distance of these molecules are
presented in Table 1 and Figure 2.

Table 1. Calculated Energies of HOMO, LUMO, HOMO—
LUMO Gaps, and Bond Distance at the B3LYP/3-21G
Level of Theory

bond
distance
HOMO LUMO HOMO-LUMO Cu—X

material (eV) (eV) gap (eV) (A) WE (eV)
CuBr —5.34 -3.12 2.22 2.175 5.07¢
Cul -537 =321 2.16 2421 5.10%%
CuSCN  —5.80  —3.50 2.30 2.076 5.354%¢
“Estimated work function from calculation. “Experimental work
function.

The calculated band gaps (at BALYP/3-21G) of CuBr, Cul,
and CuSCN are 2.22, 2.16, and 2.30 eV, respectively, with
HOMO levels —5.34, —5.37, and —5.80 eV, respectively
(Table 1). It was observed that the HOMO level of CuBr is
slightly lower (0.03 eV) than that of Cul, whereas it is about
0.46 eV lower compared to CuSCN (Figure 3). The
experimental work functions of Cul and CuSCN are 5.10
and 5.35 eV, respectively,’®*’ while calculated HOMO levels
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Figure 2. HOMO and LUMO energies of HTL materials calculated
at the B3LYP/3-21G level of theory.
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Figure 3. Energy band diagram of the photovoltaic materials.

are —5.37 and —5.80 eV, respectively, shown in Table 1.
Therefore, such calculation systematically overestimates the
HOMO level of Cul and CuSCN by ~0.3—0.4 eV because the
B3LYP method apparently does not consider the sufficient
electron correlation to correctly predict the energy levels.

If a correction of only 0.27 eV (like Cul) is applied between
experimental and calculated values, then the estimated work
function of CuBr is 5.07 eV as shown in Table 1. The energy
band diagrams of the materials used in study along with CuBr,
Cul, and CuSCN are presented in the Figure 2. Therefore,
CuBr may be a better hole extraction layer because of its
slightly higher lying work function (5.07 eV) compared to
other most studied HTL materials like PEDOT/PSS (5.20
eV), Cul (5.10 eV), and CuSCN (5.35 eV).

Moreover, CuBr can easily restrict the transport of electron
to the anode electrode because of its higher lying LUMO level
than the LUMO levels of active materials PCDTBT, PTB7,
and PC,;BM. It is noted that both CuBr and active-layer
materials like PCDTBT and PTB7 are hydrophobic in nature,
which may offer good compatibility and ordering to decrease
the contact resistance between the active layer and HTL.

To examine the effectiveness of CuBr as an important
solution-processable HTL material for OSCs, we consider
conventional device geometry ITO/HTL/active layer/Al as
presented in Figure 4. Two most important donor polymers
PTB7 and PCDTBT blended with PC,;BM were used as the
active layer for device fabrication. The chemical structures of
these materials are also presented in Figure 4.

2.3. Photovoltaic Device Characteristics Result. To
study the performance of CuBr as an HTL, we have fabricated
conventional device structure ITO/CuBr/active layer/Al. The
concentration of the CuBr solution and thickness of the HTL
were optimized (conditions are mentioned in Experimental
Section) to reach the maximum possible efficiency of the
device. The optimization process is used throughout the
further study. Figure S displays the current density voltage (J—
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Figure 4. Device geometry of OSCs with CuBr as HTL and the
chemical structures of organic materials used in the active layer.
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Figure S. J—V characteristics of PTB7/PC,BM devices under
illumination conditions.

V) characteristics of the CuBr-based device using PTB7/
PC;BM as an active layer under illuminations (Figure SS for
J—V curve under dark). The OSC results of these devices
extracted from the J—V measurements are presented in Table
2. To investigate the effect of solvents on the device
performance, three different solvents (DMF, DMSO, and
MeCN) were used. We found that the CuBr thin film that was
deposited from DMEF solvent as a HTL in the device shows the
highest PCE of 5.16% with short-circuit current (J,.), open
circuit voltage (V,.), and fill factor (FF) are 14.62 mA/cm?
0.72 V, and 50%, respectively, as presented in Table 2. While
CuBr thin films were deposited from DMSO and MeCN
solvents show slightly lower PCE of 4.81 and 4.25%,
respectively.

In order to further examine the effectiveness of CuBr as a
solution-processable HTL on device performance, another
well-studied donor polymer PCDTBT was selected for our
further study. In this study, the optimized concentration of
CuBr was used for the device fabrication with the same device
geometry and the three solvents. Figure 6 shows the J—V
characteristics under illumination conditions, respectively, and
the dark curve (Figure S6) shows diode characteristics. Similar
to a previous study, the DMF solvent device exhibits the
highest PCE of 4.72% with J,, V., and FF being 10.04 mA/
cm?, 0.87 V, and 53.9%, respectively, as presented in Table 2.
However, the CuBr thin films that were deposited with DMSO
and MeCN show lower PCE of around 4.51 and 3.30%,
respectively. It may be mentioned here that for comparison
purpose, devices were fabricated without using the HTL under
identical conditions as described above, and very poor PCE
~0.37 and ~0.26% have been achieved in device configuration
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Table 2. Device Results of OSCs Based on the CuBr as a HTL with Different Solvents (Average of 4 Devices)

active layer CuBr in different solvents Joe (mA/cm?) V.. (V) FF (%) PCE (%)

PTB7/PC,,BM DMEF 14.62 0.72 50.0 5.16 (+0.16)
DMSO 14.41 0.72 46.1 4.81 (£0.19)
MeCN 13.81 0.68 447 425 (£0.24)
PCDTBT/PC,,BM DMF 10.04 0.87 53.9 472 (+0.23)
DMSO 10.45 0.85 50.6 451 (£0.14)
MeCN 9.50 0.80 43.5 3.30 (+0.19)
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Figure 6. J—V characteristics of PCDTBT/PC,BM devices under
illumination conditions.

of ITO/PTB7/PC,,BM/Al and ITO/PCDTBT/PC,,BM/A,
respectively, as presented in Figure S7.

It was observed that under identical conditions, all the
devices show very good performance, while the CuBr HTL
deposited with DMF solvent exhibits best results as compared
to the layer deposited from DMSO and MeCN solvents in
both of active-layer combinations. Interestingly, we found that
the HTL deposited from three different solvents has significant
effects on the FF, whereas it has very little effect on J,. and V..
However, the devices that were fabricated using the HTL
deposited from DMF and DMSO have slightly higher FF
compared to the device using HTL deposited from MeCN
solvent. This may be due to the surface morphology of the
HTL films arising during film deposition from different
solvents. It may be mentioned here that a small difference of
device parameters (PCE, J,, FF, and V,.) has been observed
between the devices made from DMF and DMSO solvents,
whereas a significant difference of the device parameters has
been found when the device was prepared from the MeCN
solvent. This may be due to the lower boiling point of MeCN
as compared to the DMF and DMSO.

2.4. Surface Morphological Result. We have investigated
the morphology of the CuBr-deposited HTL from different

solvent has a relatively smoother surface as compared to
DMSO and MeCN solvents because the average roughness
values of CuBr films deposited from DMF, DMSO, and MeCN
solvents are 2.71, 5.33, and 8.81 nm, respectively. The
smoother interface between CuBr and active layers may
allow for better contact; as a result, it improves the device
performance (J,, FF, and V) as well as efficiency of the
device. Despite the surface morphology, the volume of the thin
film is also important for the performance of the OSC because
of the thin-film volume corresponding to the size of the layer
and domains and thereby of the typically active area of the
device and related to exciton generation, diffusion, dissocia-
tion, and charge transport.”’

3. CONCLUSIONS

In conclusion, for the first time, we have demonstrated CuBr as
a solution-processable, efficient, and inexpensive inorganic
HTL for cost-effective OSC fabrication. The CuBr thin film
deposited from different solvents are highly transparent. The
importance of CuBr as a common hole transport material was
examined by device fabrication of OSCs based on two well-
reported donor materials PTB7 and PCDTBT. The resulting
devices based on CuBr as a HTL show comparable PCE as
previously reported traditional HTLs such as PEDOT/PSS,
Cul, CuSCN, and so forth. To understand the importance of
the material in general, three different solvents—DMF,
DMSO, and MeCN—were used for solution-processing thin-
film deposition. We found that the HTL deposited from three

1: Height

1: Height

63.9nm [ heosre | NN

72.5 nm
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-

1: Height

Figure 7. AFM images of (left) ITO/CuBr (DMF), (middle) ITO/CuBr (DMSO), and (right) ITO/CuBr (MeCN).
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different solvents show very good performance. We have
shown that the deposition solvents of the HTL in solar cells
have a major effect on FF, whereas they have a minor effect on
Jic and V,, although the difference of the device parameters
(PCE, J, FF, and V) are significant for the device using the
HTL deposited from MeCN solvent. The reason behind this
observation is the surface morphology of the CuBr film in
different solvents and volatile nature of solvents. The key
advantages of solution-processable CuBr as a HTL are high
transparency, easy deposition, nontoxicity, and low cost, which
are essential for possible large-area OSCs.

4. EXPERIMENTAL SECTION

4.1. Reagents and Materials. The polymers poly[N-9”-
heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2’,1’,3'-
benzothiadiazole) (PCDTBT) and poly[4,8-bis[(2-
ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiaphene-2,6-diyl][3-
fluro-2-[ (2-ethylhexyl)cabonyl]thieno[ 3,4-b]thiophenyldiyl] ]
(PTB7) and acceptor phenyl-C,;-butyric acid methyl ester
(PC,BM) were purchased from Ossila Limited, United
Kingdom. Copper bromide (CuBr) and solvents such as 1,2-
dichlorobenzene (DCB), chlorobenzene (CB), diiodooctane
(DI1O), MeCN, DMSO, and DMF were purchased from Sigma
Aldrich. All these commercially available chemicals were used
without further purification.

4.2. Preparation of the CuBr Layer as HTLs. CuBr
material (50 mg) was dissolved in 5.0 mL solvent and the
combined mixture was sonicated for 2 h at room temperature.
After sonication, the resulting suspension was capped for 30
min at room temperature. The insoluble portion of the mixture
settled down. The clear solution of the upper layer was used
for solution-processable HTL deposition in OSCs.

4.3. Preparation of Active-Layer Solution. Here, the
devices were fabricated using two most studied active layers of
PCDTBT/PC, BM and PTB7/PC,BM. Donor polymer
PCDTBT and acceptor PC,;BM were used in a 1.0:4.0 w/w
ratio and dissolved in mixture solvents of CB and DCB (1.0/
3.0 v/v). The concentration of the solution is 35 mg/mL.
Another donor—acceptor combination PTB7/PC,BM was
used (ratio 1.0:1.5 w/w) and dissolved in a solution of DIO in
CB (ratio 3.0:97.0 v/v). The concentration of the solution is
25 mg/mL. Both the active-layer solutions were stirred for 12 h
at room temperature before being used.

4.4. Device Fabrication Process. ITO-coated glass
substrates (~12 ©/cm?) were used as an anode for device
fabrication. The laser ablation method was used to pattern the
ITO on the glass substrate. The patterned ITO-coated glass
substrates were cleaned by soap solution followed by boiling
acetone, trichloroethylene, and isopropanol. Finally, the
substrates were dried under vacuum for 20 min. Then, the
CuBr (~35 nm) thin film was deposited on the cleaned
substrates by spin-coating at 3000 rpm for 60 s from the three
different solution of CuBr. The resulting HTLs were baked on
the hot plate at 100 °C for 15 min and then drying for 1 h at
room temperature. The active layer (~70 nm) was deposited
by spin-coating with 1000 rpm for 90 s onto the HTL and
annealed for 10 min at 70 °C on a hot plate inside the
glovebox (inert condition). The final cathode electrode of Al
(~110 nm) was thermally deposited on the active layer. The
completed devices were then transferred for the character-
ization.

4.5. Characterization. The absorption and transmission of
CuBr thin films were recorded by a UV-1800 Shimadzu
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spectrophotometer. The film morphology of CuBr films
deposited from different solvents on ITO-coated glass
substrates was measured by atomic force microscopy (AFM)
NT-MDT Solver Pro. The J—V measurements of the devices
were performed using a Keithley 2400 source meter. A solar
simulator (AM 1.5 G) and incident power (100 mW/cm?)
were used for device characterization.

4.6. Computational Details. Density functional theory
with the B3LYP hybrid functional®® and the 3-21G basis set
was used for all theoretical calculations. The Gaussian 03
program was used for all computations. The structures of the
molecules were fully optimized using a hybrid density theory.
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