Puri, Chandni and Sumana, Gajjala (2018) Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Applied Clay Science, 166 (166). pp. 102-112. ISSN 0169-1317

[img] PDF - Published Version
Restricted to Registered users only

Download (2580Kb) | Request a copy


Herein, graphene oxide intercalated montmorillonite nanocomposites were prepared by a facile chemical route and then used for the adsorption of crystal violet dye from contaminated water. Structural characterization of the nanocomposites were performed using Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, zeta potential, X-ray diffraction, specific surface area and pore volume measurements. The isothermal data obtained using batch adsorption technique were fitted using Langmuir and Freundlich equations and it was found that the experimental data is well described by the Langmuir isotherm model with a very high adsorption capacity of 746.27 mg g(-1) . The kinetics of the adsorption process showed rapid dynamics and conformed to pseudo-second-order model with a correlation coefficient of R-2 > 0.99. The influence of interaction time and initial dye concentration on the adsorption efficiency were also investigated. Additionally, thermodynamic studies revealed that the adsorption process was spontaneous and endothermic. Further, the results indicated that the synthesised nanocomposites adsorb crystal violet dye efficiently (-96%) with a small decrease in removal efficiency even after five cycles of adsorption and could be employed in wastewater treatment for the removal of cationic dyes.

Item Type: Article
Additional Information: Copyright for this article belongs to M/s Elsevier.
Subjects: Chemistry > Physical Chemistry
Materials Science
Depositing User: Mr. Yogesh Joshi
Date Deposited: 03 Apr 2019 11:08
Last Modified: 03 Apr 2019 11:08
URI: http://npl.csircentral.net/id/eprint/4018

Actions (login required)

View Item View Item