Pradhan, Dhiren K. and Kumari, Shalini and Vasudevan, Rama K. and Strelcov, Evgheni and Puli, Venkata S. and Pradhan, Dillip K. and Kumar, Ashok and Gregg, J. Marty and Pradhan, A. K. and Kalinin, Sergei V. and Katiyar, Ram S. (2018) Exploring the Magnetoelectric Coupling at the Composite Interfaces of FE/FM/FE Heterostructures. Scientific Reports, 8. pp. 17381-17391. ISSN 2045-2322

[img]
Preview
PDF - Published Version
Download (2361Kb) | Preview

Abstract

Multiferroic materials have attracted considerable attention as possible candidates for a wide variety of future microelectronic and memory devices, although robust magnetoelectric (ME) coupling between electric and magnetic orders at room temperature still remains difficult to achieve. In order to obtain robust ME coupling at room temperature, we studied the Pb(Fe0.5Nb0.5)O-3/Ni0.65Zn0.35Fe2O4/Pb(Fe0.5Nb0.5)O-3 (PFN/NZFO/PFN) trilayer structure as a representative FE/FM/FE system. We report the ferroelectric, magnetic and ME properties of PFN/NZFO/PFN trilayer nanoscale heterostructure having dimensions 70/20/70 nm, at room temperature. The presence of oly (00l) reflection of PFN and NZFO in the X-ray diffraction (XRD) patterns and electron diffraction patterns in Transmission Electron Microscopy (TEM) confirm the epitaxial growth of multilayer heterostructure. The distribution of the ferroelectric loop area in a wide area has been studied, suggesting that spatial variability of ferroelectric switching behavior is low, and film growth is of high quality. The ferroelectric and magnetic phase transitions of these heterostructures have been found at similar to 575 K and similar to 650 K, respectively which are well above room temperature. These nanostructures exhibit low loss tangent, large saturation polarization (P-s similar to 38 mu C/cm(2)) and magnetization (M-s similar to 48 mu u/cm(3)) with strong ME coupling at room temperature revealing them as potential candidates for nanoscale multifunctional and spintronics device applications.

Item Type: Article
Subjects: Materials Science
Divisions: UNSPECIFIED
Depositing User: Mr. Yogesh Joshi
Date Deposited: 25 Feb 2019 11:28
Last Modified: 25 Feb 2019 11:28
URI: http://npl.csircentral.net/id/eprint/4016

Actions (login required)

View Item View Item