Singh, Pinki and Gupta, Bipin Kuma and Prasad, Nand Kishore and Yadav, Pramod Kumar and Upadhyay, Chandan (2018) Novel facets of multifunctional Ag@Fe3O4 core-shell nanoparticles for multimodal imaging applications. Journal of Applied Physics , 124 (7). 074901-074909. ISSN 0021-8979

[img] PDF - Published Version
Restricted to Registered users only

Download (2355Kb) | Request a copy


Biocompatible nanoparticles, with magnetic cores and optically active shells, acting as multifunctional materials with a core size of 6 nm encapsulated in silver shells of varying thickness were synthesized through a novel single phase microemulsion method. Incorporation of silver shells onto the magnetite core enhances the intensity of the highest luminescence peak observed for magnetite by a significant luminescence enhancement factor. A blue photoluminescence peak observed in the visible region of spectrum brightens further with the increase in the thickness of silver shell. The magnetic properties of these core-shell nanomaterials show superparamagnetic behavior at room temperature, which is a mandatory criterion for MRI contrast enhancement agents. The hyperthermic response of synthesized magnetite nanoparticles elevates its temperature to 43 degrees C in a sharp span of time, which is above the desired temperature for the therapeutic application of these multifunctional nanomaterials. These excellent optical and magnetic properties, of the material having a size range suitable for cellular uptake, make it a potential candidate for both diagnostic and therapeutic uses in biomedical applications.

Item Type: Article
Additional Information: Copyright for this article belongs to M/s American Institute of Physics.
Subjects: Applied Physics/Condensed Matter
Depositing User: Mr. Yogesh Joshi
Date Deposited: 17 Oct 2019 07:38
Last Modified: 17 Oct 2019 07:38

Actions (login required)

View Item View Item