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a b s t r a c t

A new series of pyrrole family, N-substituted phenyl attached alkyl at the ortho, meta and para position

were synthesized by a straight forward method and were exploited as an innovative monomer for

electroactive polymers. Ionic liquids were employed as a medium for electro-polymerization of these

monomers to obtain N-(methyl)phenyl polypyrroles. N-substituted polypyrroles show different

morphologies and conductivity according to position of methyl group on the benzene ring and

synthesis medium. The electrical conductivity value varies with the position of methyl group and

was 410�5 S/cm, higher than the sample obtained from conventional media. The resulting polymer

films were characterized by FT-IR and UV–Vis spectroscopy, contact angle measurements, cyclic

voltammetry and scanning probe microscopic technique along with their electrochromic behavior.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Among the various heterocycle-based conjugated polymers,
such as azulenes, furans, pyrroles, thiophenes and others, poly-
pyrrole (PPy) is one of the most studied conducting polymer and
has received attention due to unusual electrical, optical and
electrochemical properties [1]. Owing to its environmental
stability, high electrical conductivity, ease of synthesis by chemi-
cal as well as electrochemical route, film forming ability and
biocompatibility, PPy has been used in chemical sensors, photo-
voltaics, actuators, electrochemical cells [2–4], biological applica-
tions [5,6] and electrochromic devices [7,8]. In spite of the many
advantages of PPy, insolubility, brittleness and non-processability
are some of the drawbacks of PPy, which can be easily addressed
by appending a variety of substituent or fused rings into the main
chain [9–13]. This structural control leads to the optimization of
properties such as solution processability, better electronic con-
ductivity and stability of polymer under environmental condition.
Hence, to protect N-position in PPy by the appropriate substituent
is a facile approach, which will introduce novel synergistic
properties i.e. structural changes with enhanced solubility and
processability.
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Due to the ease of formation of relatively stable radical cations
(polarons), N-substituted pyrrole readily polymerizes by oxida-
tive polymerization chemically or electrochemically [9,14]. As a
consequence, solubility and functionality of resulting polymers
can be further improved. However, thin films obtained at liquid or
solid interface by chemical oxidation were found with inferior
quality [15,16] and to prepare adherent and uniform thin polymer
films of controlled thickness directly at the electrode surface,
electrodeposition is found to be cost effective and is a one step
process. As a matter of fact, electrodeposition process mainly
employs classical salt-solvent based electrolytes, which induces
unknown changes in the microstructure by the hydrophobicity
and high vapor pressure of the solvent. This results in less
electrochemical stability, poor adherence with the substrate and
less environmental benignity [17].

Room temperature ionic liquids, are known to be environmen-
tally benign media and ready to use hydrophobic electrolytes, can
be exploited for the growth of PPy films [3,4,17–21] due to their
non-volatility and excellent electrochemical stability. Ionic
liquids owing to their outstanding range of properties are known
to show considerable enhancement in reaction kinetics and
selectivity for processing in comparison to its counterparts
derived from conventional liquid electrolyte. They provide an
advantageous alternative to aqueous media, as their large poten-
tial window facilitate the deposition of polymers and metals that
are otherwise inaccessible in aqueous or organic solvents. The
synthesis of p-conjugated polymers in ionic liquids has demon-
strated improved stability and increased lifetime. The inherent
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properties of ionic liquids such as high conductivity, wide
potential window and air/moisture stability make them easy
alternatives as chemically mild, stable electrolytes in the
development of electrochemical and electrochromic (EC) devices
[22]. With the use of acetonitrile, the deposition efficiency
decreases as the film grows and the rate of electrodeposition is
significantly faster in the ionic liquid than conventional non-polar
solvents.

Conjugated polymers exhibit a change in their optical spectra
when they are exposed to a dopant. The fact that conjugated
polymers can repeatedly undergo electrochemical doping/undop-
ing processes makes them a promising class of material to be used
in EC devices with wide hue of colors. These p-conjugated
polymers offer support for the incorporation of ionic liquids into
a variety of electrochemical materials and their reversible doping/
undoping processes make them suitable for application in elec-
trochromic devices [21–26]. In contrast, PPy has received much
less attention than polyaniline and poly(3,4-ethylenedioxythio-
phene) and other conjugated polymers due to the poor EC
properties and a, b coupling [27]. Since the oxidized state of the
PPy is black, the application of the PPy for EC devices is limited.
One alternative to utilize the PPy as electrochromes is the use of
N-substituted PPy, to induce specific properties in polymer. Thus,
functionalization offers possibility to develop materials that show
behavior resulting from the combination of properties due to the
conjugated backbone (electronic properties) and the functional
groups.

To tune the properties of parent PPy for electroactive and EC
application, we report here a series of promising monomer, which
has not been reported so far, distinguished by ortho(o-), meta(m-)
and para(p-) position of alkyl group and the synthesis of corre-
sponding polymer. N-substituted PPy shows different morpholo-
gies and conductivity according to the position of methyl group
on the benzene ring and synthesis medium. The obtained con-
ductivity values of polymers are in the range of semiconductive
materials, i.e. 410�5 S/cm. An expedient means of the prepara-
tion and electrochemical, optical along with morphological
properties of a series of N-(methyl)phenyl pyrroles electropoly-
merized in ionic liquids is discussed.
2. Experimental

2.1. Synthesis and structural characterization of monomers

1-(2-methylphenyl)-1H-pyrrole, 1-(3-methylphenyl)-1H-pyr-
role and 1-(4-methylphenyl)-1H-pyrrole: 26.5 ml glacial acetic
acid and substituted toluidine (o-toluidine, m-toluidine and
p-toluidine) (0.059 mol) were agitated using a magnetic stirring
device and 2,5-dimethoxytetrahydrofuran (0.059 mol) was then
added slowly to this mixture (10–15 min). The solution was
refluxed for one hour under heating. When the color change from
red to black was observed, acetic acid was removed from the
solution with the aid of micro distillation setup. The residue, dark
colored precipitate, was crystallized. The IR, 1H-NMR and 13C-
NMR results of monomers were given as follows:

1-(2-methylphenyl)-1H-pyrrole: (B.P: 203 1C, yield: 74%) IR
(VmaxKBr): 670 cm�1 (C–H bending), 1040 cm�1 (benzene),
1070–1200 cm�1 (aromatic C–H bending), 1325 cm�1 (C–H
bending (alkene)), 1440–1461 cm�1 (CH3 bending), 1504 cm�1

(aromatic), 1581 cm�1 (C¼C stretching), 2860 cm�1 (aliphatic C–
H stretching), 3029–3068 cm�1 (aromatic C–H stretching),
3129 cm�1 (C–H stretching (alkene)). 1H-NMR: JHa–Hb: ortho-
8.52 Hz, JHa–Hc: meta- 2.28 Hz, Ha: 7.39 ppm; JHb–Ha: ortho-
7.62 Hz, JHb–Hc: ortho- 7.60 Hz, JHb–Hd: meta- 2.30 Hz, Hb: 7.50
ppm; JHc–Hb: ortho- 7.42 Hz, JHc–Hd: ortho- 8.23 Hz, JHc–Ha: meta-
2.01 Hz Hc: 6.9 ppm, JHd–Hc: ortho- 6.72 Hz, JHd–Hb: meta- 2.72 Hz,
Hd: 7.15 ppm; He:2.25 ppm specific doublet peak, belongs to
pyrrole Ha: 6.9 ppm specific triplet peak; Hb: 6.45 ppm specific
triplet peak.

13C-NMR: 134.05 ppm (C5), 130.79 ppm (C7), 127.82 ppm
(C10), 122.67 ppm (C9), 122.32 ppm (C8), 119.11 ppm (C1–C3),
115.45 ppm (C6), 109.29 ppm (C2–C4), 17.67 ppm (C11).
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1-(3-methylphenyl)-1 H-pyrrole: (B.P: 245 1C, Yield: 69%) IR
(VmaxKBr): 691 cm�1 (C–H bending), 1033 cm�1 (benzene),
1071–1089 cm�1 (aromatic C–H bending), 1322 cm�1 (C–H
bending (alkene)), 1452 cm�1 (CH3 bending), 1501 cm�1 (aro-
matic), 1592 cm�1 (C¼C stretching), 2865 cm�1 (aliphatic C–H
stretching), 3040 cm�1 (aromatic C–H stretching), 3136 cm�1 (C–
H stretching (alkene)).

1H-NMR: JHa–Hb: meta- 1.97 Hz, JHa–Hd: ortho- 7.84 Hz, Ha:
7.21 ppm; JHb–Ha: meta- 1.62 Hz, JHb–Hc: ortho- 8.42 Hz, JHb–Hd:
meta- 1.97 Hz, Hb: 7.48 ppm; JHc–Hb: ortho- 6.72 Hz, JHc–Hd:
ortho- 8.38 Hz, Hc: 7.50 ppm, JHd–Hc: ortho- 7.81 Hz, JHd–Hb: meta-
2.87 Hz, Hd–Ha meta- 1.83 Hz, Hd: 7.25 ppm; He:2.25 ppm spe-
cific doublet peak, belongs to pyrrole Ha: 7.19 ppm specific triplet
peak; Hb: 6.43 ppm specific triplet peak.

13C-NMR: 140.92 ppm (C5), 139.67 ppm (C10), 129.54 ppm
(C7), 126.57 ppm (C8), 121.40 ppm (C1–C3), 119.49 ppm (C6),
117.80 ppm (C9), 110.49 ppm (C2–C4), 21.66 ppm(C11).
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1-(4-methylphenyl)-1 H-pyrrole: (Yield: 66%): IR (VmaxKBr):
718 cm�1 (C–H bending), 1013 cm�1 (benzene), 1072 cm�1 (aro-
matic C–H bending), 1323 cm�1 (C–H bending), 1474 cm�1 (CH3

bending), 1523 cm�1 (aromatic), 1599 cm�1 (C¼C stretching),
2859 cm�1 (aliphatic C–H stretching), 3036 cm�1 (aromatic C–H
stretching), 3141 cm�1 (C–H stretching (alkene)).

1H-NMR: JHa–Hb: ortho- 7.36 Hz, Ha:6.41 ppm, JHb–Ha: meta-
2.04 Hz, Hb: 7.45 ppm; He: 2.25 ppm specific doublet peak,
belongs to pyrrole Ha: 7.1 ppm specific triplet peak; Hb:
6.35 ppm specific triplet peak.

13C-NMR: 138.50 ppm (C5), 135.40 ppm (C8), 129.53 ppm
(C7–C10), 120.56 ppm (C1–C3), 119.42 ppm (C6–C9),
110.09 ppm (C2–C4), 20.89 ppm (C11).
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2.2. Deposition of the polymer films

1-ethyl-3-methylimidazolium bis(pentafluoroethylsulfonyl)i-
mide (EMIPFSI) was synthesized according to the reported



Fig. 2. Redox properties of polymer films in EMIPFSI at various scan rates

(25–200 mV/s) for (a) NoMPhPPy, (b) NmMPhPPy and (c) NpMPhPPy.

Fig. 1. Chemical structure of the ortho, meta and para N-(methyl)phenyl pyrrole

(monomer) used in this study.
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method [22] and was mixed with 0.1 M monomer (Fig. 1).
EMIPFSI is a Bronsted acid–base ionic liquid, containing perfluori-
nated side chain as anion (PFSI�) makes them hydrophobic and
has affinity toward O2. Films were also grown galvanostatically
onto conducting substrate (SnO2:F coated glass) as anode at room
temperature (2572 1C) in a glass cell including a Pt sheet as the
cathode by passing current of 0.3 mA/cm2 for 5 min under
controlled environment. The substrates were cleaned ultrasoni-
cally prior to use, using deionized water, acetone and ethyl
alcohol sequentially. In the text ortho, meta and para N-(methyl)-
phenyl polypyrroles will be now refered to as NoMPhPPy,
NmMPhPPy and NpMPhPPy, respectively. For comparison,
NoMPhPPy films were also grown in control media consisting of
a 0.25 M LiCF3SO3 (Aldrich) in acetonitrile (Merck) with 0.1 M
monomer. After the polymerization, the film was removed from
growth solution, washed with isopropyl alcohol to get rid of any
unreacted monomer as well as ionic liquids.

2.3. Characterization of the polymer films

FTIR spectra of the samples were recorded in the transmission
mode at room temperature on a Perkin–Elmer spectrometer
(HP91QA, UK) in the range of 400–4000 cm�1 with resolution of
4 cm�1. 1H- and 13C-NMR spectra were recorded on Bruker using
CDCl3 as a solvent. Conductivity measurements were carried out
using a PCI-DAS6014 (Measurement Computing) as a current source,
voltammeter and temperature controller following a standard four
point probe method. UV–Vis absorption measurements were
recorded with a Perkin Elmer, Lambda 900 spectrophotometer while
the contact angle measurements were carried out by the Sessile drop
method using a drop shape analyzer (DSA 100, DSA/V 1.9) from
Kruss Gmbh. Scanning probe microscopy (SPM) microscopy (SPM)
images were recorded in intermittent contact mode (Dimension
3100, Veeco), by using Si-probes OMCL 160TS (Olympus, cantilever
having a nominal spring constant 42 Nm�1 and a resonance fre-
quency of 300 kHz). Electrochemical characterizations of samples
were carried out in the three-electrode cell equipped with a Gamry
potentiostat (Gamry Instruments). The platinum disk or conducting
glass substrates were used as working electrodes, platinum wire and
Ag/AgCl electrodes were used as counter and reference electrodes,
respectively. Alumina polishing suspension agglomerate (0.05 mm
CR) (Baikowski) was used as electrode polisher. Scanning electron
microscopy images were recorded on Phillips XL-30S FEG, while
transmission electron microscope (TEM) images were recorded on a
Philips CM-10 instrument, and the samples were extracted onto
carbon coated copper grids using N-methyl pyrrolidine and dried
before use.
3. Results and discussion

3.1. Electrochemical studies

The growth of polymers was studied by cyclic voltammograms
at a scan rate 50 mV/s (Supporting Info. S1). These voltammo-
grams illustrate characteristic polymerization graphics and with
the increase in the polymerization cycles the color of the polymer
turned from yellow to brown-black on the electrode surface after
thirty cycles (Fig. S2). The anodic oxidation peak was obtained
about 1.5 V vs. Ag/AgCl for the control media (Fig. S1a), while this
value was lowered by 150 mV to about 1.35 V for ionic liquids
(Fig S1b), due to the low surface potential of ionic liquids in the
polymerization process [28]. After thirty scans cycle the polymer
coated modified electrode was rinsed to remove the monomer
and oligomer residues and dried. Fig. 2 shows the redox proper-
ties of the N-substituted polypyrroles films in monomer free
EMIPFSI and the oxidation potentials shift to higher values, which
indicate the polymerization of N-substituted pyrroles [29]. The
polymer films shows high electroactivity in EMIPFSI. Inset of
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Fig. 1a–c shows a linear increase in the anodic peak current
density as a function of the scan rate pointing towards the redox
reaction in these films is diffusion limited. The redox activity of
the polymer films remains fairly constant and it follows the
reversible redox couples as observed during the cycling.

3.2. FTIR of N-substituted polypyrroles

FTIR spectra of the electropolymerized NoMPhPPy synthesized
in two media is distinct, the one which is prepared in ionic liquids
exhibits less water uptake, are shown in Fig. 3(a–b). The observed
bands from FTIR spectra of N-(methyl)phenyl pyrroles are char-
acteristic bands for pyrrole and phenyl rings, and they are very
similar to each other. The sharp peak at around 1574 cm�1 is one
of the characteristic bands of pyrrole ring while the absorption
band at 1458 cm�1 is attributed to the in plane¼CH stretching
vibrations of pyrrole and phenyl rings [30]. The peaks appeared
in the range of 1223 and 1089 cm�1 are the signature peaks
for pyrrole rings [31] while the absorption bands at 742–743,
977–978 and 1086–1088 cm�1 correspond to C–H stretching of
N-substituted pyrroles. The weak bands that appeared to be
around 2980 cm�1 were attributed to alkyl groups for N-sub-
stituted PPy, while the appearance of band around 790 cm�1 was
distinctive of substituted five-member heterocyclic compound
indicates a-coupling of ring. The peaks at around 839, and
643 cm�1 in the spectra of N-(methyl)phenyl pyrroles were
assigned to the out-of-plane vibration of three adjacent carbon–
hydrogen bonds in the spectrum reflect the substituted benzene
ring [32]. FTIR spectra of the NoMPhPPy synthesized in two media
have also indicated difference in the peak around 1033 cm�1. This
peak is characteristic, SO3 stretching vibration showing the
presence of LiCF3SO3 as doping anion [33].

3.3. Scanning probe microscopy (SPM)

SPM measurements were performed to have an idea of root
mean square (RMS) roughness and phase contrast on these
different N-(methyl)phenyl polypyrrole films. Small granules like
structures were observed from SPM in contrast to large granules
(cauliflower) like morphology that is characteristics of PPy.
These synthesized N-(methyl)phenyl substituted polypyrrole
films shows nanoparticulate structure having size of 4100 nm,
which was also observed from TEM images (Supporting info. S3).
Topography of these films (Fig. 4) exhibits homogeneous
morphologies and the size of grains are fairly affected from the
Fig. 3. FTIR spectra of (a) NoMPhPPy in control solution and (b) NoMPhPPy in

ionic liquids.
position of methyl group in the polymer backbone. These granules
become larger by shifting the methyl group from o- to m- to
p- positions due to steric effect.

The RMS roughness value of these films was found to be of
1270.5 nm estimated on an area of 1�1 mm2. The phase con-
trast recorded at the scale of 1�1 mm2 did not reveal a significant
contrast (Fig. 4a0) thus the substrate is covered entirely with the
polymer film of uniform deformability. By varying the position of
substituent, the film morphologies differ significantly. The small
grain size will increase the surface area of polymer films and
might facilitate ion immobilization and mass diffusion at solid/
liquid interface, and thus improve the performance of the elec-
trodes for electrocatalytic properties. The high surface area cover-
age and continuous film formation properties for the films
deposited in ionic liquids might be potentially useful for sensor
and other applications.

N-substituted PPy are known to demonstrate conductivity of
many orders of magnitude lower than that of PPy. Table 1
represents the conductivity value for different substituents of
alkyl group in phenyl polypyrrole. The electrical conductivity and
oxidation level of the 1-alkyl-substituted polypyrroles decreases
with increasing size of the alkyl substituent as substituents give
rise to modifications in polymer film properties [34]. Thus, while
PPy films can demonstrate a conductivity value of upto 100 S/cm,
poly-1-(methyl)pyrrole has a conductivity of 10�3 S/cm, and here
we have observed that N-(methyl)phenyl polypyrroles show
conductivity in the range of 410�5 S/cm. Due to the large size
of the substituent at the nitrogen atom, the steric interaction
between the repeating units will be higher and results in lower
conductivity. We speculate that the substituents alter the poly-
mer conductivity solely via a steric effect. The substituent effects
exerted by N-(p-methyl)phenyl pyrrole are much more subtle
than 1-substituted pyrroles since the electronic substituent effect
is first transmitted through a phenyl ring before the pyrrole
structure is affected and thus has a lower conductivity among
all the three substituents. Furthermore, if the phenyl ring is
twisted relative to the pyrrole moieties, the substituent effect is
further diluted. Thus, the substituent effect is expected to be
rather modest, and this has been observed. The ionic liquids based
samples show increase in the conductivity value than control one,
which may be attributed due to the imidazolium cation, which
also incorporate into polymer matrix when ionic liquids is used as
a medium for electropolymerization.

The contact angle value reveals the hydrophobic/hydrophillic
character of the surface. The use of ionic liquids makes the
polymer more hydrophobic and the position of methyl group also
has a bearing on the hydrophobicity of polymer. NpMPhPPy
shows higher contact angle value, which illustrates its hydro-
phobicity among o- and m- position alkyl group.

3.4. UV–Vis spectra

The absorption maxima in the spectra of N-methylphenyl
pyrroles were shifted to the higher wavelength from monomers,
shows that the conjugation is increasing when polymerization is
realized. Since PPy is strongly colored in both doped–undoped
states and its contrast ratio is too low for the fabrication of
practical EC devices. The electrochromic properties (Fig. 5) of the
N-(methyl)phenyl polypyrrole films were analyzed ex-situ in
liquid electrolytes (1 M LiCF3SO3 in acetonitrile). The maximum
absorbance in oxidized state is shown by the p-substituted
followed by o-substituted (methyl)phenyl polypyrrole, which
shows absorbance in photopic wavelengths at 356 and 318 nm,
respectively, while the m-substituent shows up at 314 nm and
the film produced in a conventional lithium triflate–acetonitrile
solution shows the lowest. All the polymers film exhibit different



Fig. 4. Scanning probe microscopy images of (a) NoMPhPPy in control solution, (b) NoMPhPPy, (c) NmMPhPPy and (d) NpMPhPPy in ionic liquids while (a0–d0) represent

the corresponding phase images.

Table 1
Conductivity and contact angle value for various substituted N-(methyl)phenyl

polypyrrole.

Sample Conductivity (S/cm) Contact angle

NoMPhPPy (control solution) 6�10�5 58.1
NoMPhPPy (ILs) 9�10�5 60.4
NmMPhPPy(ILs) 5.2�10�5 62
NpMPhPPy(ILs) 1.2�10�5 64

Fig. 5. Absorption spectra of (a) NoMPhPPy in control solution, (b) NoMPhPPy,

(c) NmMPhPPy and (d) NpMPhPPy in ionic liquids as synthesized in colored state

and (a0–d0) the corresponding oxidized state obtain by passing 1.5 V for 60 sec.
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p�p* transition as the lmax value is shifting with the o-, m- and
p-position. The NpMPhPPy exhibits maximum change in trans-
mission from colored to bleached state and demonstrate
relatively lower band gap as can be observed from p�p* transi-
tion in oxidized state. The UV–Vis absorption in the neutral state
shows a broad peak between 400–500 nm, which corresponds to
the transitions from valence band to the anti-bonding polaron
state. As the extent of oxidation increases, bipolaron formation
increases. The presence of bipolarons leads to only two optical
transitions in the gap, which explains the appearance of absorp-
tion spectra at higher oxidation levels. All these films can be
switched between the reduced (dark brown) to oxidized state.
The absorption peak observed between 310 and 350 is assigned to
p�p* transition associated with phenyl ring. At the neutral state
due to the p�p* transitions, lmax for PPy (Fig. 5) was found to be
starting at around 390 nm. N-substituents in the PPy give rise to a
nano-particulate structure, where this unique geometry will
facilitate ion extraction and injection along with better charge
retention properties.
4. Conclusions

o-,m- and p-, (methyl)phenyl pyrrole has been synthesized by
an easy synthetic approach and then electropolymerized to obtain
a new series of PPy family by direct anodic oxidation in a
hydrophobic ionic liquid. FTIR and UV–Visible optical results show
that the spectra of the N-(methyl)phenyl polypyrroles are
affected from the position of methyl group. N-(methyl)phenyl
polypyrroles show different morphologies and conductivity
according to the position of methyl group on the benzene ring
and synthesis medium. The conductivity values of these polymers
are in the range of semi conductive materials, i.e. 410�5 S/cm.
These new series of N-(methyl)phenyl polypyrroles also exhibit
switching properties, i.e. color change from golden brown to gray
on an application of small dc voltage. Compact and adherent thin
film was obtained, which exhibits good electrocatalytic activity
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and stability. We believe that these polymers will pave way for the
development of new materials with potential application.
Supporting information available

Cyclic voltammetry growth of polymers in different media,
transmission and scanning electron microscope images and FTIR
of polymers.
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