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Abstract. Iron-based superconducting layered compounds have the second highest transition 

temperature after cuprate superconductors. Their discovery is a milestone in the history of 

high-temperature superconductivity and will have profound implications for high-temperature 

superconducting mechanism as well as industrial applications. We have measured X-ray 

diffraction and Raman spectra of poly-crystalline FeTe1−xSex samples with x = 0.0, 0.5 and 1 at 

room temperature. X-ray profile of FeTe and FeTe0.5Se0.5 confirmed the primitive tetragonal 

unit cell. FeSe is found to be in double phase with tetragonal phase (about 66.62%) and 

orthorhombic (33.38%). A1g and B1g phonon modes were observed in Raman spectra. At room 

temperature, these lines are located at 95 and 130 cm−1 for FeTe, 93 and 129 cm -1 for FeTe 0.5 

Se 0.5 and 93 and 129 cm -1 for FeSe samples. 

1. Introduction 

The recent discovery of superconductivity in quaternary, rare-earth transition-metal oxypnictides, and 

especially the subsequent raising of the superconducting transition temperature (Tc) has drawn great 

interest in the condensed matter community [1-2]. REFeAsO1−xFx, which was abbreviated as FeAs-

1111, is the first series of superconductors showing such high Tc values without copper-oxide planes 

as traditionally observed in cuprate superconductors [3]. As such, it provides a new system, quite 

different from the cuprate superconductors, in which the mechanisms of high-temperature 

superconductivity were understand in recent years. It has been thought that superconductivity in the 

FeAs-based series may have a direct connection to a spin-density-wave (SDW) anomaly occurring in 

the FeAs layer [4]. In particular, superconductivity emerges when such SDW order is suppressed by 

chemical doping [5] or by high pressures [6]. However, all these series of iron-based superconductors 

contain the element As, which is toxic on its own and would be even more so when oxidized to As2O3 

and/or related compounds [7]. Therefore, there was a quest for search of alternate compound 

s/elements to serve As role and make these systems user and environment friendly as well. In 

continuation, as a substitute, FeSe with some Se deficiency, which is less toxic and easier to handle 

than arsenides, was found to exhibit superconductivity [3]. Among the iron-based superconductors, 

these systems, called the 11 system. The FeSe/Te superconductor is a remarkable material. The 

structural simplicity of FeCh4 (Ch = S, Se, Te), in which the conducting layers are not separated by 

any third-atom layers, offers the best tool for investigating the nature of superconductivity and 
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magnetism in Fe-based compounds [8]. Either the pressure or the chemical composition distort the 

FeCh4 tetrahedron and tune the electronic properties. 

     However, pure FeTe is not superconducting and the two end compounds FeSe and FeTe are 

structurally isomorphic but revels different physical and magnetic properties [9]. Density functional 

calculations on FeS, FeSe and FeTe indicated that the strength of spin density wave (SDW) in FeTe 

and the possibility of higher Tc  in doped FeTe alloy compared to FeSe [10]. Further, the enhancement 

of Tc in Te substituted FeSe explained on the basis of the density functional calculations. When 

partially substituting Se for Te in the antiferromagnetic FeTe, the Se substitution affects the structure 

and must be kept under control for tuning the structure deformation and the electronic properties. In 

fact, the superconducting state exists over quite a wide range of doping in the Fe (Se, Te) system (up 

to 90% Te substitution for Se in polycrystalline samples) with a maximum of 15 K [11]. FeSe has 

been studied quite extensively [9], a key observation is that the phase pure superconducting sample 

exists only for those samples prepared with intentional Se deficiency. In this paper, we report Raman-

scattering results obtained on FeTe1-xSex bulk samples. The zone-center optical modes were classified 

by a group-theoretical analysis and the Raman-active phonons assigned accordingly. 

2. Experimental  

The bulk polycrystalline FeTe1−xSex samples with x = 0.0, 0.5 and 1, were synthesized through a 

standard solid state reaction route via vacuum encapsulation. The high purity chemicals Fe, Se, and Te 

were weighed in the stoichiometric ratio and ground thoroughly in a glove box having pure Argon 

atmosphere. The mixed powder was subsequently pelletized and then encapsulated in an evacuated 

(10−3 Torr) quartz tube. The encapsulated tube was then heated at 750 °C for 12 hours and slowly 

cooled to room temperature. The heating schedule was repeated couple of times with intermediate 

grinding. The x-ray diffraction (XRD) pattern was recorded at room temperature in the scattering 

angular (2θ) range of 10° to 60° in equal 2θ steps of 0.02° using a Rigaku Diffractometer with Cu Kα 

(λ = 1.54 Å). Raman spectra were recorded with Horiba Jobin Yvon T6400 Micro Raman using a He–

Ne Laser operating at λ = 632.8 nm. 

3. Results and discussions 

Figure 1 shows the x-ray diffraction profile and results of Rietveld refinement. The x-ray profile of 

FeTe, FeTe0.5Se0.5 and FeSe confirmed the primitive tetragonal unit cell and the space group P4/nmm, 

z-coordination parameter = 0.2850). The FeTe and FeTe0.5Se0.5 samples are in single phase as confirm 

from the Rietveld refinement. However, FeSe is found to be in double phase, were in, tetragonal phase 

(about 66.62%) and orthorhombic with space group Cmcm (33.38%). The estimated values of lattice 

parameter a and c from the refinement results are listed in table 1 and both were found to be 

decreasing with the selenium concentration. Similar trends also true for volume concentration. Further, 

the bond length of Fe–Te = 2.648 Å, Fe–(Se,Te) = 2.505 Å and Fe-Se = 2.33 Å were calculated using 

the Vesta software and found that the bond length to be decreasing as the concentration of Se 

increases. Observation of such trend in bond length is quite consistent as the smaller ionic radius of Se 

over the Te, presumably creates the positive chemical pressure. 

Figure 2 shows the comparison of phonon Raman spectra between the parent compound FeTe and 

the superconducting FeTe0.5Se0.5 and FeSe. From the group theory considerations [12], Г- point 

phonon modes of the tetragonal Fe(Te,Se) can be expressed as Г = A1g + 2A2u + B1g + 2Eg + 2Eu. Fe 

and Te ions occupy 2a and 2c Wyckoff positions, respectively. Symmetry analysis shows that there 

are four Raman-active modes [A1g(Te) + B1g(Fe) + 2Eg(Te, Fe)] and two infrared active modes [A2u(Te, 

Fe) + Eu(Te, Fe)] [13]. Acordingly, the Raman tensors take the form: 
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are the Raman active modes and 
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is the Raman inactive mode. 

 

Table 1. Structural parameters obtained from the Rietveld refinement analysis of FeTe1−xSex at 300 K.  

               Space group: P4/nmm (# 129) and Space group: Cmcm  (# 63) . Atomic positions: Fe: 2a   

               (3/4, 1/2, 0); Te: 2c (1/2,1/2, 0.28); respectively. 

X 0.0 0.5 1 (P4/nmm) 1 (Cmcm) 

a (Å) 3.822 3.794 3.809 5.241 

b (Å) 3.822 3.794 3.809 4.572 

c (Å) 6.281 6.017 5.389 1.292 

V (Å3) 91.757 86.624 66.62 33.38 
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Figure 1. X-ray diffraction data along with                 Figure 2. Comparison of phonon Raman        

                the Rietveld refinement results of                                 spectra between the parent sample  

                FeTe1-xSex samples.                                                       FeTe and superconducting FeTe0.5Se0.5   

                                                                                                       and FeSe samples. Vertical line  

                                                                                                       shows the shifting of A1g mode. 

                           

     Herein, the Raman-active modes, ГRaman = A1g + B1g + 2Eg can be assigned to the observed 

frequencies. However, we have observed A1g and B1g modes in our measurements. At room 

temperature, these lines are located at 95 and 130 cm−1 for FeTe, 93 and 129 cm -1 for FeTe 0.5 Se 0.5 

and 93 and 129 cm -1 for FeSe samples. The peak position of A1g is found to be decreasing as the Se 

concentration increases. Such observation could be due the Fe magnetic moment and anharmonicity 

[13]. As mentioned above, the A1g type of Te vibrations plays the important role for the mode vibration 
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in the chalcogen’s tetrahedral formation. Only chalcogen’s antiphase vibrations that occurred 

perpendicular to the Fe layer has an internal source of anharmonicity. While the peak position of B1g 

has been shifted slightly to lower energy with increasing Se concentration. It is instructive to mention 

that Fe magnetic moment and anharmonicity may not alter the B1g modes. Therefore, the B1g vibration 

of Fe ions should not be affected by this structure due to the Fe layer topology. In other phonon 

Raman-scattering measurements, Okazaki et al. [14] have observed these modes at 158 and 202 cm-1 

on single crystal Fe1.074Te sample. Similar results were also reported by Xia et al. [15] at 159.1 and 

196.3 cm-1 for single crystal FeTe0.92 and Kumar et al. [16] at 160 and 224 cm-1 on polycrystalline 

FeSe0.82 sample. 

4. Conclusions 

We have measured X-ray diffraction and Raman spectra of poly-crystalline FeTe1−xSex samples with x 

= 0.0, 0.5 and 1 at room temperature. X-ray profile of FeTe and FeTe0.5Se0.5 confirmed the primitive 

tetragonal unit cell. FeSe is found to be in double phase with tetragonal phase (about 66.62%) and 

orthorhombic (33.38%). A1g and B1g phonon modes were observed in Raman spectra. The peak 

position of A1g is found to be decreasing as the Se concentration increases. While the peak position of 

B1g has been shifted slightly to lower energy with increasing Se concentration. 
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