Naphthalene diimide–bithiophene P(NDI2OD-T2) is a well-known donor–acceptor polymer, previously explored as n-type material in all-polymer solar cells (all-PSCs) and organic field effect transistor (OFETs) applications. The optical, bulk, electrochemical, and semiconducting properties of P(NDI2OD-T2) polymer were tuned via random incorporation of perylene diimide (PDI) as coacceptor with naphthalene diimide (NDI). Three random copolymers containing 2,2′-bithiophene as donor unit and varying compositions of naphthalene diimide (NDI) and perylene diimide (xPDI, x = 15, 30, and 50 mol % of PDI) as two mixed acceptors were synthesized by Stille coupling copolymerization. Proton NMR spectra recorded in CDCl3 showed that the π-π stacking induced aggregation among the naphthalene units could be successfully disrupted by the random incorporation of bulky PDI units. The newly synthesized random copolymers were investigated as electron acceptors in BHJ all-PSCs, and their performance was compared with P(NDI2OD-T2) as reference polymer. An enhanced PCE of 5.03% was observed for BHJ all-PSCs (all-polymer solar cells) fabricated using NDI-Th-PDI30 as acceptor and PTB7-Th as donor, while the reference polymer blend with the same donor polymer exhibited PCE of 2.97% efficiency under similar conditions. SCLC bulk carrier mobility measured for blend devices showed improved charge mobility compared to reference polymer, with PTB7-Th:NDI-Th-PDI30 blend device exhibiting the high hole and electron mobility of 4.2×10^{-4} and 1.5×10^{-4} cm²/(V s), respectively. This work demonstrates the importance of molecular design via random copolymer strategy to control the bulk crystallinity, compatibility, blend morphology, and solar cell performance of n-type copolymers.

INTRODUCTION

The research based on solution processable organic bulk-heterojunction (BHJ) solar cells is progressing very fast. Continuous efforts have been made to increase the power conversion efficiency (PCE) of BHJ solar cell via development in both the active layer material design (n-type and p-type) and the device engineering. In all-polymer BHJ solar cells (PSCs), both components of the active layer, i.e., electron donor and acceptor, are polymeric semiconductors which have potential advantages over the extensively studied donor polymer/acceptor fullerene composite solar cells. Although significant progress has been made in the development of polymer/fullerene composite solar cell in terms of their high device efficiency over >9%, the use of fullerene acceptor (PCBM and PC71BM) has some disadvantages like relatively weak absorption ability in the visible region, high cost of synthesis, and morphological instability of polymer/fullerene blend over time and temperature that limits the performance of...
the solar cell.6–9 On the other hand, non-fullerene n-type polymeric acceptors have promising features such as high absorption in visible-infrared region, low cost, high thermal and photochemical stability, mechanical flexibility, and synthetic adaptability.10–11 Among the various n-type polymeric semiconductors used in all-polymer BHJ solar cells, the polymers based on the naphthalene diimide (NDI) and periylene diimide (PDI) have exhibited the most promising features. They have high electron affinity, good absorption, thermal and photochemical stability, and π-stacking behavior which facilitates favorable solid state packing.12–14 Particularly, the low band gap core-substituted NDI donor–acceptor polymers comprised of bithiophene and selenophene donors have attracted much attention due to their high electron mobility in OFET and high PCE efficiency in solar cells.15–28 Poly{[N,N’-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5’-[(2,2’-bithiophene)]}, P-(NDI2OD-T2) (Polyera ActivInk N2200), is one of the extensively studied high performing n-type polymers reported by Facchetti et al.15,27 P(NDI2OD-T2) polymer was extensively utilized in all-PSCs and OFET applications due to its desirable photophysical and semiconducting properties. It exhibited properties like high electron mobility >0.85 cm2 V−1 s−1 in OFET, high PCE efficiency >5% in all-PSCs, solution processability, high crystalline nature, and light absorption capability near visible and infrared region.15,16,20 However, it exhibited a strong tendency to form aggregates in specific organic solvents that resulted in large-scale phase separation instead of the desirable pure donor/acceptor microphase separation.28 Consequently, the earlier reports on the all-PSC measurements of P3HT/P(NDI2OD-T2) blend showed very low device efficiency value (PCE, 0.2%).29,30 Later studies showed that the aggregation in P(NDI2OD-T2) could be suppressed significantly in the early stage of film formation by using more polar aromatic solvents.31 Indeed, the solar cell devices prepared from such nonaggregated solution showed improved PCE due to good intermixing of donor and acceptor components, thereby efficiently harvesting photogenerated excitons at donor–acceptor interface. Beyond the solvent induced morphological control, the structural variations also plays a vital role in improving the blend morphology, bulk crystallinity, molecular orientation, highest occupied and lowest unoccupied molecular orbital (HOMO–LUMO) energy level, and charge transport properties of polymer. For instance, Jen et al. reported the significant enhancement in the PCE up to 6.7% of P(NDI2OD-T2) polymer by substituting the bithiophene core with more electron-withdrawing fluorine (F) atom. The F-substituted P(NDI2OD-T2) polymer exhibited good bulk crystallinity with preferential face-on orientation in the BHJ blend film, thereby facilitating improved exciton generation, dissociation, and charge transport.32 Random copolymerization is another promising design strategy utilized for synthesis of NDI-containing acceptor polymers which showed significant improvement in the PCE in all-PSCs. NDI-based random copolymers were synthesized either by varying two different donor monomers with NDI32–34 or by varying the acceptor comonomer (such as PDI) with NDI along with a common donor co-component.18,35,36 Recent reports on the synthesis of NDI-based random copolymers involved the use of different donor monomers such as bithiophene (BT) and thiophene (T),32 thiophene (T) and selenophene (Se),33 and thieno[3,2-b]thiophene (TT) and thienylene-vinylene–thiénylene (TVT).34 Li et al. demonstrated great improvement in the PCE of P(NDI2OD-T2) polymer by modulating its crystallinity by replacing a certain amount of bithiophene (BT) units with single thiophene (T).32 One of the compositions containing 10 mol % (PNDI-T10) showed optimal bulk crystallinity and miscibility with donor PTB7-Th, which led to PCE as high as 7.6% after solvent annealing. The use of two mixed acceptors NDI and PDI in random copolymer along with common donor also showed promising enhancement in the PCE. Particularly Jenekhe et al. demonstrated enhancement of PCE up to 6.3% in NDI-selenophene copolymer by synthesizing NDI-selenophene/PDI-selenophene random copolymers with different incorporation of PDI into copolymer backbone.18 These NDI-selenophene/PDI-selenophene random copolymers are one of the best reported n-type copolymers which showed optimum bulk crystallinity and compatible blend morphology with donor polymer that has resulted in improved PCE in solar cell.

Most of the aforementioned reports demonstrated the importance of systematic tuning of polymer bulk crystallinity via optimizing the different comonomer compositions in random copolymers. Bulk crystallinity is one of the key factors that is responsible for bulk morphology of donor:acceptor blend in all-PSCs.32–34 Optimum crystallinity of acceptor polymer is highly desirable to ensure proper intermixing with donor polymer in the blend to achieve good D/A microphase separation. Inspired by these strategies, we have synthesized a series of new n-type NDI-bithiophene/PDI-bithiophene random copolymers (NDI-Th-PDIs) by incorporating varying amounts of periylene diimide (PDI) as coacceptor along with NDI. The effect of random copolymer compositions on their energy level, optical properties, bulk crystallinity, blend morphology, charge transport, and all-PSC performance was investigated. The all-PSCs performance of the newly synthesized random copolymers was investigated in combination with PTB7 or PTB7-Th as the donor polymer. The device efficiency was compared with that of P(NDI2OD-T2) polymer as reference. The bulk charge transport properties were measured by space charge limited current (SCLC) method, the surface morphology of blends was investigated by atomic force microscopy (AFM), thin film organization using X-ray diffraction (XRD), and photoluminescence (PL) measurements.

EXPERIMENTAL SECTION

Materials

1,4,5,8-Naphthalenetetraacarbonylic dianhydride (NTCDA), 3,4,9,10-perylenetetraacarbonylic dianhydride (PTCDA), 5,5’-bis(trimethylstannyl)-2,2’-bithiophene 9%, 2-octyldodecanol, 2-ethylhexylamine, and bis(triphenylphosphine)palladium(II) dichloride (Pd(PPh3)2Cl2) were purchased from Sigma-Aldrich and used without further purification. The donor polymers PTB7 and PTB7-Th and electron transport layer PFN (poly[9,9-bis(3-fluorophenyl)-9H-fluorene-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]) used in all-polymer solar cell study were purchased from 1-Materials, Canada.

Measurements

1H NMR and 13C NMR spectra were recorded using a 200 and 400 MHz Bruker NMR spectrophotometer in CDCl₃ containing small amounts of TMS as internal standard. Mass spectra were recorded on Voyager-De-STR MALDI-TOF (Applied Bio-systems, Framingham, MA) equipped with 337 nm pulsed nitrogen laser used for desorption and ionization. The molecular weights of polymers were determined using gel permeation chromatography (GPC). GPC measurements were carried on a Thermo Quest (TQ) GPC at 25 °C using chloroform as the mobile phase. The analysis was carried out at a flow rate of 1 mL/min using a set of five μ-Styrage HT Columns (HT-2 to HT-6) and a refractive index (RI) detector. Columns were calibrated with polystyrene standards, and the
molecular weights are reported with respect to polystyrene. FT-IR spectra were recorded with an ATR mode using Bruker alpha-T spectrophotometer in the range of 4000 to 400 cm⁻¹. Absorption spectra were recorded using PerkinElmer Lambda-35 UV–vis spectrophotometer. Thermogravimetric analysis (TGA) was performed using a TGA Q5000 thermogravimetric analyzer. Samples were run from 40 to 900 °C with a heating rate of 10 °C/min under nitrogen. DSC (differential scanning calorimetry) measurements were performed on TA Q10 differential scanning calorimeter at a heating rate of 10 °C/min under a nitrogen atmosphere. The thin film X-ray diffraction data were recorded using a Rigaku model Dmax-2500 diffractometer using Cu Kα (1.54 Å) emission, and the spectra were recorded in the range of 2θ = 2°–50°. Electrochemical behavior of NDI polymers was analyzed by cyclic voltammetry using BAS-Epsilon potentiostat. The surface morphology of active layers of actual bulk-heterojunction (BHJ) solar cells was characterized by AFM imaging technique using the Agilent S500 AM scanning probe microscopy in tapping mode using Si probe. PL Measurements were carried out on a PTI quanta Master-400 florescence spectrometer.

Sample Preparation. For the UV–vis absorption studies, thin films were prepared by dissolving polymer in chloroform (10 mg/mL) and spin-coating (600 rpm/60 s) on quartz plates. For the XRD analysis, films were prepared by drop-casting the highly concentrated (20 mg/mL) polymer solution in chloroform on glass slide followed by thermal annealing at 160 °C for 10 min. Thin film samples of the blend donor:acceptor polymers for PL and XRD measurements were prepared by mixing the donor PTB7-Th and acceptors P(NDI2OD-T2) and NDI-Th-PDI baking for 15 min at 80 °C. PL Measurements were carried out with the Agilent 5500 AM scanning probe spectrophotometer. Thermogravimetric analysis (TGA) was performed using a Rigaku model Dmax-2500 diffractometer using Cu Kα (1.54 Å) emission, and the spectra were recorded in the range of 2θ = 2°–50°. Electrochemical behavior of NDI polymers was analyzed by cyclic voltammetry using BAS-Epsilon potentiostat. The surface morphology of active layers of actual bulk-heterojunction (BHJ) solar cells was characterized by AFM imaging technique using the Agilent S500 AM scanning probe microscopy in tapping mode using Si probe. PL Measurements were carried out on a PTI quanta Master-400 florescence spectrometer.

Fabrication and Characterization of the Photovoltaic Cells. PTB7 or PTB7-Th as donor and P(NDI2OD-T2) and NDI-Th-PDI in 1:3.1 (w/w) ratio in chloroform under similar conditions as that for the photovoltaic device fabrication. Synthesis of Homo and Random Copolymers. Poly[N,N′-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diy]-alt-5,5-(2,2′-bithiophene), P(NDI2OD-T2), NDI-2OD-Thr2 (0.4 g, 0.406 mmol) and 5,5′-bis(trimethylenimide)-alt-5,5′,2,2′-bithiophene (0.190 g, 0.406 mmol) were taken in an air-free Schlenk tube under N2 atmosphere. Dry toluene (18 mL) was added in the tube followed by purging with nitrogen for half-hour. Bis(triphenylphosphine)palladium(II) dichloride (Pd(Ph3)2Cl2) (15 mg, 0.0211 mmol) was added to the tube quickly by opening rubber septa, and the whole mixture was degassed by four freeze–vacuum–thaw cycles. The reaction mixture was stirred at 90–95 °C for 3 days. Bromobenzene (0.2 mL) was then added, and the reaction mixture was further stirred at 90–95 °C for 12 h. Upon cooling to room temperature, a solution of potassium fluoride (1 g) in 2 mL of water was added and stirred for 2 h. The reaction mixture was extracted with chloroform (250 mL × 3). The organic layer was washed with water, dried over anhydrous sodium sulfate, and concentrated on a rotary evaporator. The obtained residue was dried in a vacuum oven and subjected to a Soxhlet extraction with acetone (48 h) and chloroform (12 h). Half of the chloroform was evaporated on rota, and the remaining chloroform solution containing polymer was precipitated in 500 mL of methanol, stirred for 2 h, filtered on a Buchner funnel, washed with plenty of methanol, and dried in vacuum. The polymer was obtained as dark blue solid. Molecular weight and GPC: Mw, 717. GPC: Mw, 26.4 kDa; Mz, 152 kDa; Mf, 5.7.

Poly[N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide-2,6-diy)-alt-5,5′,2,2′-bithiophene]-ran-[N,N′-bis(2-ethylhexyl)-1,7-dibromo-3,4,9,10-perylenedicarboximide-alt-5,5′,2,2′-bithiophene]. All the random copolymers, i.e., NDI-Th-PDI50, NDI-Th-PDI10, and NDI-Th-PDI50, were synthesized using same procedure as that given for P(NDI2OD-T2), but with different mole ratios of NDI-2OD-Th2 to PDI-2OD-Th2.

NDI-Th-PDI50. NDI-Th-PDI50 was synthesized using same procedure as that given for P(NDI2OD-T2), but with different mole ratios of NDI-2OD-Th2 to PDI-2OD-Th2.
NDI-Th-PDI30. NDI-Th-PDI30 was synthesized using 0.250 g (0.508 mmol) of 5,5′-bis(trimethylstannyl)-2,2′-bithiophene, 0.350 g (0.355 mmol) of NDI-2OD-Br2, 117 mg (0.152 mmol) of PDI-2EH-Br2, and 18 mg (0.0264 mmol) of Pd(Ph3)2Cl2. Yield: 0.450 g (88%).

1H NMR (400 MHz, CDCl3) δ ppm: 8.81 (br, 2H naphthalene aromatic), 8.71, 8.5 (br, 2H perylene aromatic), 8.36 (br, 4H perylene aromatic), 7.31 (br, 4H bithiophene), 4.11 (br, 8H), 1.97 (br, 4H), 1.23 (br, 80H), 0.84 (br, 24 H). FTIR (ATR, cm−1): 2919, 2852, 1702, 1660, 1572, 1513, 1433, 1401, 1306, 1243, 1186, 1174, 1043, 963, 927, 881, 853, 768, 713, 670. GPC: Mn, 16.8 kDa; Mw, 49.8 kDa; Mw/Mn, 2.9.

NDI-Th-PDI50. NDI-Th-PDI50 was synthesized using 0.250 g (0.508 mmol) of 5,5′-bis(trimethylstannyl)-2,2′-bithiophene, 0.250 g (0.254 mmol) of NDI-2OD-Br2, 0.197 g (0.254 mmol) of PDI-2EH-Br2, and 18 mg (0.0264 mmol) of Pd(Ph3)2Cl2. 1H NMR (400 MHz, CDCl3) δ ppm: 8.79 (br, 2H naphthalene aromatic), 8.69 (br, 2H perylene aromatic), 8.35 (br, 4H perylene aromatic), 7.33 (br, 4H bithiophene), 4.11 (br, 8H), 1.96 (br, 4H), 1.21 (br, 80H), 0.81 (br, 24 H). FTIR (ATR, cm−1): 2921, 2852, 1700, 1660, 1587, 1433, 1401, 1374, 1313, 1244, 1188, 1036, 860, 712, 755, 715, 761. GPC: Mn, 12.6 kDa; Mw, 32.4 kDa; Mw/Mn, 2.5.

RESULTS AND DISCUSSION

Synthesis and Characterization. Poly[{N,N′-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} P(NDI2OD-T2) and its random copolymers NDI bithiophene/PDI bithiophene incorporating various mole percentages of perylene diimide (PDI) were synthesized by Stille coupling polymerization. The molecular structure of P(NDI2OD-T2) is depicted in Scheme 1, and the synthesis of random copolymers is outlined in Scheme 2. The synthesis of monomers N,N′-bis(2-octyldodecyl)-2,6-dibromonaphthalene-1,4:5,8-tetracarboxylic diimide (NDI-2OD-Br2) and N,N′-bis(2-ethylhexyl)-1,7-dibromo-3,4,9,10-perylenetetracarboxylic diimide (PDI-2EH-Br2) were carried out according to previously reported procedures (Supporting Information).38−40 Elemental analysis of the monomers was carried out to confirm the purity, and the observed CHN values were matching with the calculated values which are given in the Supporting Information. The labeled 1H NMR spectra of monomer (NDI-2OD-Br2 and PDI-2EH-Br2) and copolymers were subsequently subjected to MALDI-TOF analysis recorded using 2,5-dihydroxybenzoic acid as the matrix, and molecular ion peaks were obtained for cationic species such as [M + 1] and [M + Na+]. The MALDI spectra of the monomers are given in the Supporting Information (Figure S1). Three random copolymers, i.e., NDI-Th-PDI15, NDI-Th-PDI30, and NDI-Th-PDI50, were synthesized by varying the feed ratio of the two monomers NDI-2OD-Br2 and PDI-2EH-Br2 (15, 30, and 50 mol % of PDI) while maintaining the concentration of the donor bithiophene comonomer constant (1 mol) in feed. The higher incorporation of PDI-2EH-Br2 monomer having short alkyl side chain (2-ethylhexyl) produced random copolymers which had limited solubility in common organic solvents. The maximum incorporation of 50 mol % of PDI in random copolymer (NDI-Th-PDI50) was found to retain good solubility in common organic solvents like chloroform, chlorobenzene, and dichlorobenzene, etc. The alternate copolymer NDI-bithiophene (P(NDI2OD-T2), Scheme 1) was also synthesized as a reference benchmark. The structures of monomers and polymers were characterized by 1H NMR, 13C NMR, and FTIR spectra. The NMR and MALDI-TOF spectra and elemental analysis of the molecules confirmed the structure and high purity of the monomers.

The labeled 1H NMR spectra of monomer (NDI-2OD-Br2 and PDI-2EH-Br2) and copolymers are given in the Supporting Information (Figures S2−S7). The actual incorporation of the PDI in the random copolymers could be determined from the proton NMR spectra. Figure 1 shows the expanded aromatic region (6.0−9.5 ppm) in the proton NMR spectra of the...
reference and random copolymers. The 1H NMR spectra of reference polymer P(NDI2OD-T2) exhibited one extra broad peak at ~ 8.5 ppm which has been attributed to strong interchain aggregation of P(NDI2OD-T2) in chloroform.28,29,41 The peaks at 8.5 and 8.82 ppm together accounted for the two aromatic protons of naphthalene core, while the peak at 7.33 ppm corresponded to the four protons of the bithiophene unit. From the figure it could be seen that in the random copolymers the extra peak for aggregation diminished progressively with the incorporation of PDI units and two new peaks at ~ 8.35 ppm (four protons) and ~ 8.70 (two protons) ppm appeared for PDI aromatic protons, whose intensity increased progressively. The dotted line in Figure 1 indicates the position of the aggregated naphthyl aromatic protons. The peak at 8.70 ppm for two aromatic protons of PDI overlapped with the aromatic protons of NDI. However, knowing the contribution of single PDI proton from the PDI proton integration at 8.35 ppm, the value could be subtracted from the integration in the 8.5–8.8 ppm region. Thus, the PDI incorporation was calculated as 15, 29, and 43% respectively.

Figure 1. 1H NMR spectra of copolymers (expanded aromatic region) recorded in CDCl$_3$.

Table 1. GPC Molecular Weight and Thermal Characteristics of P(NDI2OD-T2) and NDI-Th-PDi$_x$ Random Copolymers

<table>
<thead>
<tr>
<th>polymer</th>
<th>M_w (kDa)</th>
<th>M_w/M_n</th>
<th>T_d (°C)</th>
<th>T_{m^*} (°C)</th>
<th>ΔH_{m^*} (J/g)</th>
<th>$\Delta H_{m,\text{blend}}$ (J/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(NDI2OD-T2)</td>
<td>152</td>
<td>5.7</td>
<td>422</td>
<td>286.61</td>
<td>6.65</td>
<td>2.56</td>
</tr>
<tr>
<td>NDI-Th-PDi15</td>
<td>60.7</td>
<td>3.7</td>
<td>437</td>
<td>289.47</td>
<td>12.57</td>
<td>1.77</td>
</tr>
<tr>
<td>NDI-Th-PDi30</td>
<td>49.8</td>
<td>2.9</td>
<td>435</td>
<td>284.0</td>
<td>6.55</td>
<td>1.49</td>
</tr>
<tr>
<td>NDI-Th-PDi50</td>
<td>32.4</td>
<td>2.5</td>
<td>436</td>
<td>269.38</td>
<td>4.41</td>
<td></td>
</tr>
</tbody>
</table>

aWeight-average molecular weight (M_w). bPolydispersity index (M_w/M_n). cThe decomposition temperature (5% weight loss) estimated using TGA under N$_2$. dMeasured using DSC under N$_2$. eEnthalpy for blend PTb7-Th: P(NDI2OD-T2) and PTB7-Th:NDI-Th-PDi$_x$ (1:3:1, w/w).
The comparison of ΔH_m showed that NDI-Th-PDI15 exhibited...
showed two distinct absorption bands; the first high energy absorption band at ~300–425 nm was accounted for by π→π* transition, and another low energy band at ~460–800 nm was attributed to intramolecular charge transfer (ICT) from bithiophene unit to NDI/PDI.\(^{[28]}\) The reference polymer P(NDI2OD-T2) showed typical absorption spectrum with π→π* absorption peak at ~400 nm and ICT peak at 645 nm. In the random copolymers, the position of the π→π* absorption peak remained unchanged, while the ICT absorption band was found to be blue-shifted (hypsochromic shift). It was observed at 630 nm in NDI-Th-PDI15, 618 nm in NDI-Th-PDI30, and 605 nm in NDI-Th-PDI50. The progressive hypsochromic shift observed in ICT absorption band of random copolymers could be accounted for by the reduced planarity of the polymer backbone when compared to P(NDI2OD-T2). The reference polymer P(NDI2OD-T2) is well-known to form self-aggregates in chloroform due to strong interchain stacking of more planar polymer backbone, which leads to a red-shifted ICT band.\(^{[28]}\) Incorporation of the large PDI units in the random copolymers reduced the planarity of the polymer backbone as well as interchain aggregation.\(^{[35]}\) Consequently, the ICT band was shifted to lower wavelength. Furthermore, an additional broad peak at ~500 nm was obtained for all random copolymers which was absent in P(NDI2OD-T2), and the intensity of this peak at ~500 nm was found to increase with the increase in the content of PDI unit. This additional peak was assigned for the typical absorption of the PDI component in the random copolymer. The spin-coated thin films of all copolymers showed similar absorption spectra as that in solution (Figure 3, bottom), except for the large red-shifting of the ICT band in the solid state compared to that in solution due to the interchain aggregation and chain planarization.\(^{[35]}\) The reference copolymer P(NDI2OD-T2) showed ICT band at 685 nm. On the other hand, random copolymers NDI-Th-PDI15, NDI-Th-PDI30, and NDI-Th-PDI50 exhibited blue-shifted ICT band along with decreased absorption coefficient at 670, 655, and 630 nm, respectively. The large blue-shifting of ICT band in random copolymer indicated less interchain stacking and aggregation in solid state compared to P(NDI2OD-T2). The reduced self-aggregation of random copolymer could be beneficial to improve the intermixing of n-type random copolymer with donor polymer to form compatible blend which is discussed later on in the all-PSCs device section. The optical band gaps (\(E_g^{opt}\)) of random copolymers were calculated from lower energy absorption band edge of thin film and are listed in Table 2. An optical band gap of 1.52 eV was obtained for reference copolymer P(NDI2OD-T2) which was slightly increased to 1.55, 1.57, and 1.60 eV in NDI-Th-PDI15, NDI-Th-PDI30, and NDI-Th-PDI50, respectively. Electrochemical redox behavior and electronic energy levels of new n-type random copolymers were analyzed by cyclic voltammetry. Thin films of polymer were deposited on the platinum working electrode. The measurement was carried out in acetonitrile solvent with ferrocene/ferrocnium as an internal standard and tetrabutylammonium hexafluorophosphate (n-Bu4NPF6 \(0.1 \text{ M/}

Table 2. UV–Vis Absorption, Optical Band Gap, Electronic Energy Levels, and Thin-Film XRD Data of Thermally Annealed Random Copolymers of P(NDI2OD-T2) and NDI-Th-PDIs Random Copolymers

<table>
<thead>
<tr>
<th>polymer</th>
<th>(\lambda_{\text{nm}}) (nm)</th>
<th>(E_g^{opt}) (eV)</th>
<th>LUMO (eV)</th>
<th>HOMO (eV)</th>
<th>(d_00) (deg)</th>
<th>(d_{010}) (deg)</th>
<th>(d_{010}) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(NDI2OD-T2)</td>
<td>367, 645</td>
<td>381, 685</td>
<td>1.52</td>
<td>3.90</td>
<td>5.42</td>
<td>4.06</td>
<td>23.10</td>
</tr>
<tr>
<td>NDI-Th-PDI15</td>
<td>367, 630</td>
<td>381, 670</td>
<td>1.55</td>
<td>3.94</td>
<td>5.49</td>
<td>4.21</td>
<td>23.03</td>
</tr>
<tr>
<td>NDI-Th-PDI30</td>
<td>367, 618</td>
<td>374, 655</td>
<td>1.57</td>
<td>3.94</td>
<td>5.51</td>
<td>4.58</td>
<td>22.59</td>
</tr>
<tr>
<td>NDI-Th-PDI50</td>
<td>367, 605</td>
<td>368, 630</td>
<td>1.60</td>
<td>4.00</td>
<td>5.60</td>
<td>4.80</td>
<td>21.92</td>
</tr>
</tbody>
</table>

DOI: 10.1021/acs.macromol.6b01566
Macromolecules 2016, 49, 8113–8125
packing distance was found to decrease progressively with Th-PDI30, and NDI-Th-PDI50, respectively. The lamellar copolymers was observed at 2 to lamellar packing distance of 21.72 Å and π given in Table 2. The XRD pattern of reference polymer thin for all copolymers are shown in Figure S10, and the calculated reversible reduction peaks, which were attributed to the formation of radical anion and dianions of NDI in the polymer backbone. All random copolymers showed quasi-reversible reduction peaks with almost similar values of electrochemical reduction like P(NDI2OD-T2). None of the copolymer showed oxidation peak during anodic scan up to 2 V. The lowest occupied molecular orbital (LUMO) energy levels were estimated based on the onset value of first reduction peak and reference energy level of ferrocene (4.8 eV below the vacuum level) according to $E_{\text{LUMO}} (\text{eV}) = -e \times (E_{\text{onset}} + 4.8)$ below the vacuum level. The highest occupied molecular orbital (HOMO) levels were calculated based on the optical band gap obtained from the solid state absorption onset measurements. The LUMO and HOMO energy levels of P(NDI2OD-T2) were found to be -3.90 eV and -5.42 eV, respectively, which resemble the previously reported values. Newly synthesized random copolymers exhibited almost similar energy levels (LUMO and HOMO) (Table 2) like reference polymer P(NDI2OD-T2). This suggested that there was a negligible effect of incorporation of PDI unit on the energy level of random copolymers, and both the components NDI and PDI exhibited almost similar electron accepting strength.

Thin-Film Crystallinity. The molecular packing and bulk crystalline nature of reference P(NDI2OD-T2) and new n-type random copolymers were analyzed using wide-angle X-ray diffraction (XRD) measurement. Figure 4 shows the X-ray diffraction patterns of thermally annealed (at 160 °C, 10 min) thin films of copolymer on glass substrate, and relevant data are given in Table 2. The XRD pattern of reference polymer P(NDI2OD-T2) showed lamellar peak (100) at 2θ = 4.06° and π−π stacking peak (010) at 2θ = 23.10°, which corresponded to lamellar packing distance of 21.72 Å and π−π stacking distance of 3.84 Å. The lamellar peak (100) for random copolymers was observed at 2θ = 4.21°, 4.58°, and 4.80° with d-spacing 20.96, 19.27, and 18.38 Å for NDI-Th-PDI15, NDI-Th-PDI30, and NDI-Th-PDI50, respectively. The lamellar packing distance was found to decrease progressively with increasing incorporation of PDI moiety in the random copolymer chain. This observation is very similar to the previous results by Jenekhe et al. and could be attributed to the shorter 2-ethylhexyl side chains on PDI moiety. In contrast, the π−π stacking distance increased linearly with increasing incorporation of PDI moiety into the copolymer chain (Figure 4, inset). It increased from 3.84 Å in reference P(NDI2OD-T2) to 3.85, 3.93, and 4.00 Å in NDI-Th-PDI15, NDI-Th-PDI30, and NDI-Th-PDI50, respectively. Overall, all the random copolymers (NDI-Th-PDlx) exhibited sharp and intense peaks with the lamellar ordering observed up to third order in XRD (Figure S11), indicating their highly crystalline nature.

D:A Blend Property Analysis. It is important to study the behavior of the donor:acceptor copolymer blend in order to understand their photovoltaic device performance. Therefore, blend samples were prepared by mixing donor:acceptor (D:A) in the ratio 1:3 (w/w) choosing PTB7-Th as the standard donor polymer which produced relatively higher PCE. This D:A blend ratio (1:3:1) was found to be optimum for all-PSCs which is described later on. The thermal analysis of the blend samples were performed using DSC under identical quench–cooling conditions as was employed for the pristine samples. The thermograms of the blends of the reference as well as PDI copolymers are given in Figure S12, and the values of the melting transition enthalpies (ΔH_m) are listed in Table 1. The donor PTB7-Th did not exhibit a melting transition under similar conditions. All blend samples exhibited reduction in the enthalpy of melting (2.56, 1.77, and 1.49 J/g for P(NDI2OD-T2), NDI-Th-PDI15, and NDI-Th-PDI30, respectively) compared to the pristine samples (6.65, 12.57, and 6.55 J/g, respectively). The NDI-Th-PD150 copolymer blend did not exhibit any transition even after being subjected to the quench–cooling procedure. The reduced crystallinity indicated better donor:acceptor miscibility in the blend.

The thin films of the blends were next analyzed using wide-angle X-ray diffraction studies, and the corresponding diffraction patterns are shown in Figure S13. It was observed that the sharp and intense peaks for the lamellar ordering observed in the pristine samples (Figure S11) were mostly retained in the blends of PTB7-Th with P(NDI2OD-T2) and NDI-Th-PDI15 (indicated by arrow in the Figure S13). It could be seen that the reference blend PTB7-Th:P(NDI2OD-T2) exhibited relatively more number of peaks compared to the random copolymers, which suggested that it did not form good compatible blends. The higher ordered lamellar peaks were mostly not observed in the blends of NDI-Th-PDI30 and NDI-Th-PD150. The (100) and the π−π stacking peak were the only prominent peaks in these blends. The absence of ordered lamellar peaks indicated that the copolymers with higher PDI content like the NDI-Th-PDI30 and NDI-Th-PDI50 formed more compatible donor−acceptor blends.

The PTB7-Th:acceptor blend films were further analyzed by photoluminescence (PL) quenching experiments to investigate the exciton diffusion and dissociation. Figure S14 shows the steady-state PL spectra of the neat PTB7-Th, P(NDI2OD-T2), NDI-Th-PDI15, NDI-Th-PDI30, and NDI-Th-PD150 along with their blend films with PTB7-Th. The PL spectra (at excitation wavelength 645 nm) of neat PTB7-Th showed peak maxima at ~755 nm, while acceptor polymers exhibited broad peaks in the range of ~800–830 nm. All D:A blend films showed significant PL quenching compared to neat PTB7-Th. The relative PL quenching efficiency (ΔPL) was estimated by measuring the intensity of various D:A blend with respect to neat PTB7-Th (Figure S15). The PTB7-Th:P(NDI2OD-T2) diffraction patterns are shown in Figure S11.
reference blend showed $\Delta PL \sim 76\%$, while PTB7-Th:NDI-Th-PDI15, PTB7-Th:NDI-Th-PDI30, and PTB7-Th:NDI-Th-PDI50 exhibited ΔPL of $\sim 86\%$, $\sim 87\%$, and $\sim 91\%$, respectively. Higher ΔPL in the random copolymer blends indicated efficient exciton dissociation at D/A interface as a result of good intermixing of acceptor polymer with PTB7-Th. Overall, the thermal property, crystallinity, and PL quenching efficiency of the blends pointed toward the copolymers’ ability to perform better in photovoltaic devices compared to the reference polymer, especially for the copolymers with higher PDI content, i.e., PTB7-Th:NDI-Th-PDI30 and PTB7-Th:NDI-Th-PDI50.

All-Polymer BHJ Solar Cells. The potential application of random copolymers (NDI-Th-PDlx) as acceptor (n-type) materials in all-polymer solar cells was explored by fabricating BHJ all-PSCs using PTB7 or PTB7-Th polymers as electron donor materials. The inverted devices with configuration of ITO/ZnO/PFN/polymer blend/Al were fabricated. The detailed procedure for device structure and fabrication is given in the Experimental Section. The all-PSCs device using n-type polymer P(NDI2OD-T2) was also fabricated for comparison. The blend active layers of donor:acceptor polymers were deposited by spin-coating from chloroform solution (12 mg/mL) containing 1.25% volume fraction of 1,8-diiodooctane (DIO) additives. The optimum donor:acceptor (D:A) blend ratio and thickness of BHJ active layer films were found to be 1:3 (w/w) and 100–110 nm, respectively. Figure 5 shows the current density–voltage (J–V) curves obtained for both donor:acceptor polymer blend all-PSCs. The optimized solar cell parameters including short-circuit current density (J_{sc}), the open-circuit voltage (V_{oc}), fill factor (FF), and PCE are summarized in Table 3. The reference polymer P-(NDI2OD-T2) is a well-studied acceptor material used with various low-band-gap polymer and small molecule donors in all-polymer solar cells. In our study, using PTB7 as the donor material, P(NDI2OD-T2) exhibited maximum PCE of 2.06% (J_{sc} of 6.26 mA/cm2, V_{oc} of 0.81 V, and FF of 40.5%) in device based on the PTB7:P(NDI2OD-T2) blend, and a maximum PCE of 2.97% was obtained (J_{sc} of 9.05 mA/cm2, V_{oc} of 0.797 V, and FF of 41.3%) using PTB7-Th as the donor material; this optimized PCE is comparable with the previously reported values. The device performance of the various PTB7/PTB7-Th:NDI-Th-PDlx blend devices showed that all the newly synthesized random copolymers (NDI-Th-PDI15, NDI-Th-PDI30, and NDI-Th-PDI50) exhibited significant improvement in the PCE as compared to reference polymer P(NDI2OD-T2). For instance, PTB7:NDI-Th-PDI15 blend device showed PCE of 3.15% (J_{sc} of 7.71 mA/cm2, V_{oc} of 0.78, and FF of 52.3%). Further enhancement in the photovoltaic performance was observed in PTB7:NDI-Th-PDI30 blend device which exhibited PCE of 3.56% (J_{sc} of 9.45 mA/cm2, V_{oc} of 0.78, and FF of 48.0%). However, the PTB7:NDI-Th-PDI50 blend with highest incorporation of PDI (50%) showed lower PCE of 2.72% (J_{sc} of 7.60 mA/cm2, V_{oc} of 0.77, and FF of 45.9%), which was still higher compared to the reference polymer P(NDI2OD-T2). A similar trend of enhanced photovoltaic performance was observed for blend devices of the random copolymers with PTB7-Th as the donor. The PCE values obtained were 4.22%, 5.03%, and 3.33% for PTB7-Th:NDI-Th-PDI15, PTB7-Th:NDI-Th-PDI30, and PTB7-Th:NDI-Th-PDI50 blend devices, respectively. The dependence of the PCE on the varying incorporation of PDI unit in the copolymer is shown in Figure 6. From Figure 6 it could be observed that NDI-Th-PDI30 reflected the best optimized composition with both donor polymers, and further increase in PDI incorporation into (NDI-Th-PDlx) random copolymer did not result in improvement of the photovoltaic performance. The improved device performance upon using PTB7-Th as donor instead of PTB7 in the blend devices with the random copolymers was expected since PTB7-Th had shown face-on molecular orientation and superior photovoltaic properties with various electron acceptor materials. The enhancement in the PCE values of random copolymers NDI-Th-PDlx based all-PSCs devices was mainly due to the increase in the J_{sc} value. Additionally, the observed variations in the J_{sc} values with different copolymer compositions were well-reflected in the changes of their spectral response in EQE spectrum, which is shown in Figure 7. All random copolymer blend PTB7:NDI-Th-PDlx devices exhibited broad photosresponse in the region of 300–800 nm with higher photocurrent generation compared to reference polymer P(NDI2OD-T2). Particularly, NDI-Th-PDI30 showed highest EQE of 48% at ~ 605 nm for blend device with PTB7 and 55% at ~ 615 nm for blend device with PTB7-Th, which was consistent with the observed J_{sc} value (within 2%). A careful observation of EQE spectra revealed the presence of an additional broad peak at ~ 480 nm for all random copolymers (shown by arrow in Figure 7) that was also observed in their absorption spectra, which was attributed to PDI unit. Thus, the observed EQE spectra showed that the acceptor polymer in blend also contributed to light harvesting and in photocurrent generation.

Bulk Carrier Charge Transport in BHJ Blend Film. The effect of charge carrier transport properties on the photovoltaic performance was investigated by measuring the bulk electron and hole mobility of polymer/polymer blend films using the space-charge-limited current (SCLC) technique.
measured by the SCLC method is more relevant to the bulk process, e.g., organic photovoltaic device and OLED (organic light-emitting device) devices. All donor:acceptor polymer blend films were made similarly as the all-PSCs devices. The electron-only device was fabricated using ITO/ZnO/active layer/Al structure, and hole-only device was fabricated using ITO/MoOx/active layer/Au structure (the detailed procedure of device fabrication is given in the Experimental Section). The electron and hole mobility along with \(\mu_h/\mu_e \) values obtained from PTB7:acceptor and PTB7-Th:acceptor polymer blend devices are summarized in Table 4, and their \(J-V \) curves with the SCLC fittings are shown in Figure S16. The reference PTB7:P(NDI2OD-T2) blend device exhibited the hole and electron mobility of \(6.7 \times 10^{-5} \) and \(7.5 \times 10^{-5} \) cm\(^2\)/(V s), respectively, while the values of mobilities with PTB7-Th as the donor were \(\mu_h = 0.9 \times 10^{-4} \) cm\(^2\)/(V s) and \(\mu_e = 0.7 \times 10^{-4} \) cm\(^2\)/(V s)). Improvements were observed in the hole mobility values for the copolymer blend compositions with higher PDI content, i.e., NDI-Th-PDI30 and NDI-Th-PDI50 with PTB7 (\(\mu_h = 3.8 \times 10^{-4} \) and \(3.5 \times 10^{-4} \) cm\(^2\)/(V s), respectively), while the electron mobilities values were very similar for all copolymer composition blends. The hole and electron mobility values of the random copolymer blends with PTB7-Th as the donor were of the same order as that of the reference polymer. Among the random copolymers, NDI-Th-PDI30 showed better bulk mobility values (hole and electron) with PTB7 or PTB7-Th blend compositions.

BHJ Solar Cell Morphology. Among various other parameters, the BHJ morphology of active layer (D/A) is one of the important factor that influences the photovoltaic performance. AFM images of donor:acceptor polymer blends were captured to investigate the surface morphology all-PSCs BHJ devices. The donor:acceptor polymer (1.3:1 w/w) blend films were prepared in identical ways as that for all-PSCs devices. Figures S17 and S18 shows AFM height images (3 \(\mu \)m \(\times \) 3 \(\mu \)m) of PTB7/PTB7-Th:P(NDI2OD-T2) and PTB7/PTB7-Th:NDI-Th-PDI\(x \) blend solar cells. The reference PTB7:P(NDI2OD-T2) or PTB7-Th:P(NDI2OD-T2) blend films showed rather coarsened morphology with average root-mean-square (RMS) surface roughness of 2.06 and 1.87 nm, respectively, due to the formation of large polymer aggregate domains.18−42 The incorporation of large PDI unit in the random copolymer showed dramatic change in the surface morphology of PTB7/PTB7-Th:NDI-Th-PDI\(x \) blend films compared to reference blend. The PTB7:NDI-Th-PDI15 and PTB7:NDI-Th-PDI30 showed better bulk mobility values (hole and electron) with PTB7 or PTB7-Th blend compositions.

Table 4. Photovoltaic Properties of PTB7/PTB7-Th: NDI-Th-PDI\(x \) and PTB7/PTB7-Th: P(NDI2OD-T2) Blend All-Polymer Solar Cells

<table>
<thead>
<tr>
<th>active layer</th>
<th>(V_{oc}) (V)</th>
<th>(J_{sc}) (mA/cm(^2))</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTB7 donor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTB7:P(NDI2OD-T2)</td>
<td>0.807 ± 0.05</td>
<td>6.19 ± 0.07</td>
<td>40.1 ± 0.04</td>
<td>2.00 ± 0.06</td>
</tr>
<tr>
<td>PTB7:NDI-Th-PDI15</td>
<td>0.777 ± 0.03</td>
<td>7.66 ± 0.05</td>
<td>52.1 ± 0.02</td>
<td>3.10 ± 0.05</td>
</tr>
<tr>
<td>PTB7:NDI-Th-PDI30</td>
<td>0.780 ± 0.02</td>
<td>9.41 ± 0.04</td>
<td>47.8 ± 0.02</td>
<td>3.50 ± 0.06</td>
</tr>
<tr>
<td>PTB7:NDI-Th-PDI50</td>
<td>0.774 ± 0.05</td>
<td>7.55 ± 0.05</td>
<td>45.5 ± 0.04</td>
<td>2.65 ± 0.07</td>
</tr>
<tr>
<td>PTB7-Th donor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTB7-Th:P(NDI2OD-T2)</td>
<td>0.793 ± 0.04</td>
<td>8.96 ± 0.09</td>
<td>41.0 ± 0.03</td>
<td>2.91 ± 0.06</td>
</tr>
<tr>
<td>PTB7-Th:NDI-Th-PDI15</td>
<td>0.787 ± 0.05</td>
<td>10.65 ± 0.06</td>
<td>49.3 ± 0.04</td>
<td>4.13 ± 0.09</td>
</tr>
<tr>
<td>PTB7-Th:NDI-Th-PDI30</td>
<td>0.792 ± 0.03</td>
<td>11.39 ± 0.04</td>
<td>55.2 ± 0.02</td>
<td>4.98 ± 0.05</td>
</tr>
<tr>
<td>PTB7-Th:NDI-Th-PDI50</td>
<td>0.793 ± 0.04</td>
<td>10.10 ± 0.06</td>
<td>40.7 ± 0.05</td>
<td>3.26 ± 0.07</td>
</tr>
</tbody>
</table>
Th-PDI30 blend films showed proper uniform microphase separation with smaller phase-separated domain size. Furthermore, the RMS surface roughness decreased to 1.08 nm in PTB7:NDI-Th-PDI15 blend and 1.22 nm in the PTB7:NDI-Th-PDI30 blend, which suggested the formation of less aggregated domain leading to better donor/acceptor intermixing at the nanometer scale. The well-developed nanoscale interpenetrating network observed in PTB7:NDI-Th-PDI15 and PTB7:NDI-Th-PDI30 blend films is beneficial for exciton dissociation and charge carrier transport.\(^\text{1}\) Compared to the other two random copolymer blend, the PTB7:NDI-Th-PDI50 blend film showed high RMS surface roughness of 1.42 nm with coarsened morphology, which was still more uniform with smaller phase-separated domain size compared to the reference PTB7:P(NDI2OD-T2) blend. A similar trend was observed in the blend films with PTB7-Th as the donor (Figure S18). PTB7-Th:NDI-Th-PDI15 blend and PTB7-Th:NDI-Th-PDI30 blend films showed more uniform microphase separation (as indicated by the reduced RMS surface roughness) compared to the reference polymer blend. The reduced roughness can play an important role in the charge collection process as it decreases surface recombination and increases the current density as observed from the J–V curves.

CONCLUSIONS

In this study, we report the synthesis of a series of new n-type semiconducting random copolymers NDI-bithiophene/PDI-bithiophene (NDI-Th-PDIx) by incorporating various amounts of perylene diimide (PDI) (xPDI = 15, 30, and 50 mol % of PDI) coacceptor unit into the P(NDI2OD-T2) polymer. The properties of these acceptor copolymers were investigated in depth in the pristine film as well as their donor–acceptor (D–A) blends with PTB7-Th as donor in order to understand the structural features that influence the all-PSCs performance. Proton NMR, XRD, and DSC studies of pristine copolymers showed that increasing PDI content in the random copolymers resulted in progressive reduction of self-aggregation tendency, increased π–π stacking distance, and lowering of crystallinity. Although the copolymer with lowest PDI content (NDI-Th-PDI15) exhibited higher ΔH_{m} compared to P(NDI2OD-T2), its D–A blend with PTB7-Th showed reduced crystallinity compared to PTB7-Th:P(NDI2OD-T2) blend. Analysis of blend properties of these acceptor copolymers with PTB7-Th gave important findings such as: (1) Overall reduction of crystallinity in blends was observed as evidenced by their much lower ΔH_{m} values compared to the pristine samples. (2) All random copolymers exhibited lower extent of crystallinity compared to P(NDI2OD-T2), and the crystallinity was found to decrease as PDI content increased. (3) XRD of the blend films showed disappearance of the higher ordered lamellar peaks in the random copolymers; the reference polymer seemed to retain them in the blend as well. (4) Higher PL quenching was observed in random copolymer blends as compared to P(NDI2OD-T2). Overall, the random copolymers showed reduced interchain interaction promoting better compatibility with the donor polymer compared to P(NDI2OD-T2). This was reflected in their bulk photovoltaic properties as well with the random copolymers exhibiting higher PCE compared to P(NDI2OD-T2). A maximum PCE of ~5% was observed in the case of PTB7-Th:NDI-Th-PDI30 blend devices. A precise correlation of the structural variation among the random copolymers with their device performance was not very straightforward. For instance, although least self-aggregation was observed in NDI-Th-PDI50, it did not exhibit the highest PCE value among the random copolymers. AFM imaging analysis indicated large surface roughness for this blend combination. A probable reason for this discrepancy could be the comparatively low molecular weight of the NDI-Th-PDI50, which was the lowest due to the reduced solubility of the short ethylhexyl side chain on the PDI unit. Our studies showed that presumably NDI-Th-PDI30 exhibited optimal crystallinity and miscibility with donor polymer which led to the best D/A compatibility, nanoscale phase separation, and improved bulk carrier charge transport in the blend. Thus, it is evident from the structure–property analysis that the incorporation of n-type PDI building block into P(NDI2OD-T2) polymer is a very effective strategy to tune its photovoltaic parameters, and improved PCE observed in new n-type random copolymers proves its potential application in future all-PSCs.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.6b01566.

Synthesis of the NDI and PDI monomers, their structural characterization using MALDI-TOF, 1H NMR, GPC, TGA, CV, XRD, AFM, PL, and SCLC curves for the polymers (PDF)

AUTHOR INFORMATION

Corresponding Authors

(V.G.) E-mail drvinaygupta@netscape.net.

(S.K.A.) E-mail sk.asha@ncl.res.in.
Acknowledgments

This work is financially supported by CSIR network project (TAPSUN) NWP0054. N.B.K. thanks CSIR for a SRF fellowship. S.S. and R.D. thank UGC for a SRF and JRF fellowship, respectively.

References

