Synthesis And Characterization Of Cadmium Doped Lithium Ferrite By Sol-gel Technique Vivek Verma, Vibhav Pandey, R.P. Aloysius, V.P.S. Awana, R.K. Kotnala and P.C.Kothari National Physical Laboratory, New Delhi-110012, India Abstract. Cadmium substituted lithium ferrite $\mathrm{Li}_{0.5 \times 2}\mathrm{Cd}_x\mathrm{Fe}_{2.5 \times 2}\mathrm{O}_4$ were prepared by sol-gel method. Saturation magnetization versus composition shows a maximum $\mathrm{M_s} = 80$ emu/g at for = 0.3. In all samples, dielectric constant decreases with increasing frequency while dielectric loss tangent first increases and attains a maximum value followed by a decrease. Dielectric constant is in the range of 10^5 for sample $\mathrm{x} = 0.1$ & 0.3 with a low dielectric loss. High dielectric constant and low dielectric loss are essential requirement of ferrite for power applications. Keywords: Magnetic properties; saturation magnetization; dielectric constant. PACS: 74.25.Ha: 75.30.Cr. 77.22.Gm: ## INTRODUCTION Mixed lithium ferrites are of much interest because of their application in microwave devices such as isolators, circulators, gyrators and phase shifter [1]. There are reports on microstructure, electrical and magnetic behavior of lithium cadmium ferrite prepared by solid-state method [2, 3]. The present work reports the effect of Cd²⁺ substitution on the microstructure, dielectric and magnetic properties of lithium cadmium ferrites prepared by sol-gel technique. #### **EXPERIMENTAL** Fine particles of $\text{Li}_{0.5\text{-x/2}}\text{Cd}_x\text{Fe}_{2.5\text{-x/2}}\text{O}_4$ have been prepared by sol-gel technique [4]. The pre-sintering of the samples was carried out at 650 °C for 7 h. Circular pellets of dimensions were then prepared. Final sintering was done at 1200 °C for 10 h in air. The structural characterization was carried out by the X-ray diffraction (XRD). Magnetic measurements were made using a vibrating sample magnetometer (Lake-Shore 7305). The dielectric measurements were taken in the range 1 KHz to 20 MHz by a HP4192A impedance analyzer. # RESULTS AND DISCUSSION Pure lithium ferrite sample is an inverse spinel phase having main diffraction planes [211], [220], [311], [400], [422], [333] and [440] with maximum diffraction intensity from the [311] plane as shown in FIGURE 1. The substitution of cadmium ions in the series $\text{Li}_{0.5-x/2}\text{Cd}_x\text{Fe}_{2.5-x/2}\text{O}_4$ affects the 1:3 cations ordering of the octahedral spinel sublattice. The cation distribution of lithium ferrite having the inverse spinel structure is giving by $[Fe^{3^+}]_A[Li_{0.5}^{1^+}Fe_{1.5}^{3^+}]_B O_4^{2^-}$. Cd^{2^+} preferably occupied tetrahedral site as $[Fe_{1-x}^{3^+}Cd_x^{2^+}]_A[Li_{0.5-x/2}^{1^+}Fe_{1.5+x/2}^{1^+}]_B O_4^{2^-}$. FIGURE 1. (a) X-ray pattern of Li_{0.5-x/2}Cd_xFe_{2.5-x/2}O₄, (b) Hystersis (M-H) loops of cadmium substited lithium ferrites at room temperature TABLE 1. Microstructure and magnetic data for Li_{0.5-x/2}Cd_xFe_{2.5-x/2}O₄. | Composition | Lattice | Grain Size | Saturation Moment (emu/gm) | Initial permeability | T_c | |--|------------------------|------------|----------------------------|----------------------|-------| | Li _{0.5} Fe _{2.5} O ₄ | Constant (Å)
8.3330 | 5.1 | 55.1 | 95.78 | 670 | | Li _{0.45} Cd ₁ Fe _{2.45} O ₄ | 8.3496 | 8.5 | 61.4 | 235.26 | 530 | | Li _{0.4} Cd _{0.2} Fe _{2.4} O ₄ | 8.4100 | 12.2 | 66.1 | 274.98 | 410 | | Li _{0.35} Cd _{0.3} Fe _{2.35} O ₄ | 8.4303 | 16.3 | 79.8 | 374.65 | 350 | | Li _{0.3} Cd _{0.4} Fe _{2.3} O ₄ | 8.5016 | 14.1 | 54.3 | 415.12 | 240 | | Li _{0.25} Cd _{0.5} Fe _{2.25} O ₄ | 8.5023 | 11.5 | 40.8 | 475.25 | 170 | | Li _{0.2} Cd _{0.6} Fe _{2.2} O ₄ | 8.5266 | 6.8 | 33.4 | 700.02 | 110 | FIGURE 1 (b) shows the M-H curves of all compositions of $\text{Li}_{0.5\text{-x/2}}\text{Cd}_x\text{Fe}_{2.5\text{-x/2}}\text{O}_4$ at room temperature. It is clear that saturation magnetization M_s initially increases with cadmium concentration and attains a maximum value ($M_s = 79.8 \text{ emu/g}$) for Cd = 0.3 ($\text{Li}_{0.35}\text{Cd}_{0.3}\text{Fe}_{2.35}\text{O}_4$) concentration and begins to decrease by further substitution of cadmium. From the TABLE 1 it is evident that the grain size or the average grain diameter increases up to x = 0.3, then decreases. The initial increase in M_s with increased cadmium content may be due to the increase of resultant sub-lattice magnetic moment, which may be due to Neel's two sub-lattice model. The decrease in magnetization for x > 0.3 can be explained with the three sub-lattice model suggested by Yafet and Kittel [5]. Table 1 shows the different values of measurement made for lattice constant, grain size and important magnetic properties of different composition samples. The variation of dielectric constant and loss tangent (tan δ) with frequency is shown in FIGURE 2 & 3. A maximum value of tan δ is observed when the jump frequency of electron between Fe²⁺ and Fe³⁺ is equal to the frequency of the applied field [6]. From the plots of tan δ versus frequency, it can be seen that the curves for samples with x = 0.1, 0.2, 0.3, 0.4, shows maximum at frequency after 10^5 Hz. The samples with x = 0.5 and 0.6 do not show any such maximum (f_{max}) in frequency range 10^3 to 10^6 Hz. FIGURE 2. Variation of dielectric constant with log frequency in Li0.5-x/2CdxFe2.5-x/2O4 for different compositions (a) x = 0.0 - 0.3 (b) x = 0.4 - 0.6 at room temperature. FIGURE 3. Variation of dielectric loss tangent (tan δ) with log frequency in Li0.5-x/2CdxFe2.5-x/2O4 for different compositions (a) x = 0.0 - 0.3 (b) x = 0.4 - 0.6 at room temperature. It is interesting to observe that for x = 0.1, 0.2, 0.4 the maximum shifts towards lower frequency side. ### CONCLUSIONS $Li_{0.5-x/2}Cd_xFe_{2.5-x/2}O_4$ has been prepared by sol-gel technique. The higher value of loss tangent is expected due to increase in the hopping mechanism between Fe^{2^+} and Fe^{3^+} ions present in the structure of lithium cadmium ferrites, which is responsible for maximum polarization. ## REFERENCES - 1. D. Ravinder, J. Appl. Phys. 75, 6121 (1994). - S.S. Bellad, R. B. Pujar, B. K. Chougule, Materials Chemistry and Physics, 52 166-169 (1998). - 3. S. S. Bellad, J. Magn. Magn. Mater. 195 (1999)57-64. - R.K.Kotnala et al., Sol. Stat. Comm. 143 527-531 (2007). - 5. N. S. Satya Murthy, M.G. Natera, Phy. Rev., 181, (1969) - R.S.Patil, S.V. Kokatkhar, A.M. Sankapal, S.R.Sawant, Indian J. Pure Appl. Phys. 32 193 (1994).