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We report a half-Heusler (HH) derivative Ti9Ni7Sn8 with VEC¼ 17.25 to investigate the struc-

tural changes for the optimization of high thermoelectric performance. The structural analysis

reveals that the resulting material is a nanocomposite of HH and full-Heusler with traces of

Ti6Sn5 type-phase. Interestingly, present nanocomposite exhibits a significant decrease in thermal

conductivity due to phonon scattering and improvement in the power factor due to combined

effect of nanoinclusion-induced electron injection and electron scattering at interfaces, leading to

a boost in the ZT value to 0.32 at 773 K, which is 60% higher than its bulk counterpart HH

TiNiSn. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914504]

The half-Heusler (HH) materials with varying valence

electron concentration per unit cell (VEC) results to a large

number of structures and substructures that can be exploited

to enhance the thermoelectric performance.1–3 The HH mate-

rials which exhibit face centered cubic crystal structure [F-4

3m (no. 216)] possess a VEC of 18.3 With this VEC¼ 18,

variety of behaviors such as semiconductors, semimetals,

ferromagnetism, half-metallic ferromagnetism, or anti-

ferromagnetism Pauli metals, can exist in series of com-

pounds.4–6 On the whole, it has also been noticed that such a

variety of behaviors may come from the presence of an

energy gap in the density of states for the VEC¼ 18.7 The

HH materials with VEC¼ 18 has been considered as a

potential semiconducting thermoelectric materials. These

materials have a decent Seebeck coefficient with moderate

electrical conductivity due to combined feature of a narrow

energy gap and a slight shift of Fermi level above the top of

the valence band.8 Reports show that both n-type9–12 and

p-type13–16 with exceptionally large power factor can exist in

such compounds and hence may help in making a compatible

module for thermoelectric devices. Despite all these favor-

able properties, the main drawback in this class of thermo-

electric materials is the very large thermal conductivity in

comparison to other state-of-the-art TE materials17–22 which

hinders to yielding a descent thermoelectric figure of merit,

ZT ¼ a2rT
j , where r is the electrical conductivity, a is the

Seebeck coefficient, j is the total thermal conductivity, and

T is the absolute temperature. These three physical parame-

ters a, r, and j are interrelated in such a way that modifica-

tion to any of these adversely affects the other and hence

limits the overall enhancement in ZT.23

In the recent years, several strategies such as doping,9,15

solid solution alloying,12–14 and nanostructuring10,16 in HH

compound have been adopted to disrupt heat carrying pho-

nons to significantly reduce their j. Recently, full-Heusler

(FH) inclusions within the p and n type HH compounds have

been produced by several groups24–30 by adding excess Co-

concentration in p-type MCoSb (where M¼Ti, Zr, Hf) and

Ni-concentration in n-type MNiSn (where M¼Ti, Zr, Hf). A

significant decrease in thermal conductivities of these mate-

rials was noted.

Most of the half-Heusler with VEC � 18 are stable in

cubic phase and are potential thermoelectric materials.3 We

believe that exploring the materials with varying VEC and

hence modifying the microstructure and electronic structure

may also provide a viable path for optimizing high ZT for

thermoelectric applications. Herein, an undoped HH deriva-

tive with generic composition Ti9Ni7Sn8 with VEC¼ 17.25

per formula unit which is smaller than VEC of 18 for normal

TiNiSn HH has been synthesized in order to obtain any struc-

tural modifications such as either super cell structure forma-

tion of HH if possible similar to a report on Ru9Zn7Sb8
2 or

otherwise a composite phase material if phase segregation

occurs for the improvement in thermoelectric perform-

ance.1,2,31 We observed that despite to the formation of super-

cell of HH structure, the material exhibits a composite phase

consisting of primarily HH and FH with trace amount of

Ti6Sn5-type phase. Thus, this mismatch in VEC number does

not allow this composition to be electronically stabilized as a

supercell of HH; rather it leads to the phase separation result-

ing in a nanocomposite of HH TiNiSn, FH TiNi2Sn, and

Ti6Sn5 type phase. Interestingly, a drastic reduction in the lat-

tice thermal conductivity (�55%) was observed which

accounts for improvement in ZT � 0.32 at 773 K.

The stoichiometric compositions of TiNiSn and

Ti9Ni7Sn8 were initially melted in an arc-melt furnace. The

melted ingot was annealed at 1173 K for one week and subse-

quently consolidated, employing spark plasma sintering (SPS)

technique. The process yielded 12.7 mm diameter bulk dense

pellets. The density of the nanocomposite was obtained from

pellets using an equipment (Model: METTLER TOLEDO,

ML204/A01) based on Archimedes principle. The measured

density of the nanocomposite was observed to be 92.5% of
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the theoretical density calculated by Reitveld analysis. In

present study, TiNiSn is designated as normal bulk HH and

Ti9Ni7Sn8 HH/(FH, Ti6Sn5) is named as bulk nanocomposite.

In order to study the thermoelectric properties, polished

bars of about 3� 2� 10 mm and disk of 12.7 mm in diameter

and 2 mm in thickness were prepared. The Seebeck coeffi-

cient and electrical conductivity were measured on bar sam-

ples by using commercial equipments (ULVAC, ZEM-3)

and thermal diffusivity was measured on disk sample

employing laser flash system (Lineseis, LFA 1000). The spe-

cific heat capacity was determined using a differential scan-

ning calorimeter (DSC 822e Metter Toledo). The thermal

conductivity calculated as the product of the thermal diffu-

sivity, specific heat capacity, and volume density of the sam-

ples. To confirm the reproducibility of sample preparation

procedure and reliability of the thermoelectric measurements

of normal bulk HH and HH/(FH, Ti6Sn5) nanocomposite ma-

terial, the sample synthesis and thermoelectric properties

measurements were repeated three times and values were

found to be consistent.

The XRD pattern of SPSed samples of bulk HH TiNiSn

and bulk nanocomposite Ti9Ni7Sn8 are presented in Figure 1.

The XRD peaks of TiNiSn were found to be matching well

with those of half-Heusler (Fig. 1(a)), while the XRD pattern

of Ti9Ni7Sn8 (Fig. 1(b)) indicates the presence of peaks corre-

sponding to HH and FH with traces of Ti6Sn5 phase. The

Rietveld fitting for the Ti9Ni7Sn8 composite is shown in Fig.

1(c). The Rietveld analysis revealed the material to be com-

posite with 97.1 6 1.2% in its HH phase, 2.6 6 0.2% in FH

and traces of metallic Ti6Sn5 phase. The detail results of

Rietveld refinement are summarized in Table I. Interestingly,

the larger width of the XRD peaks compared to the peak

width of standard XRD pattern were also noticed indicating

the presence of strain in the sample. A strain of 0.58% was

estimated by using Williamson-Hall analysis.

In order to examine the finer microstructural details of

the bulk nanocomposite Ti9Ni7Sn8 material, its transmission

electron microscopy (TEM) images are presented in Fig. 2.

A low magnification TEM image, Fig. 2(a), reveals a clear

phase contrast of TiNiSn-HH (region A) and TiNi2Sn-FH

(dotted circle) with traces of Ti6Sn5 (region B). The selected

area electron diffraction (SAED) pattern, Fig. 2(b), taken

from region A confirms the grain to be a single crystalline

HH phase with zone axis [1�12]. An enlarged view of the dot-

ted region [Fig. 2(a)] is presented in Fig. 2(c), showing two

phase interface. The Fast Fourier Transform (FFT) taken

from a region marked as rectangle in Fig. 2(c) is shown in

the inset of Fig. 2(c) which confirms the marked region to be

FH phase along [1�12] direction parallel to the electron beam.

Interestingly, the energy dispersive X-ray spectroscopic

(EDS) data obtained from the grains of FH also present the

chemical composition to be very close to the FH phase. Fig.

2(e) shows SAED pattern taken from the grain marked as

dotted area B revealing a ring pattern which corresponds to

the HH phase and additional spot corresponding to Ti6Sn5

phase confirming that the white contrast in dotted area B

[Fig. 2(a)] is nano precipitates of Ti6Sn5 phase. The phases

observed in TEM were consistent with the XRD result and

also with scanning electron microscopy (SEM) investigation

given in the supplementary material (Fig. S1).41

It is worth mentioning that the compositional optimiza-

tion in HH TiNiSn usually results in a miscibility gap in liq-

uid, allowing a phase separation at the nano-scale, which has

been well documented by several groups.1,32,33 At high tem-

perature, the liquid melt of Ti9Ni7Sn8 undergoes solidification

at low temperature and crystallizes to form a single solid so-

lution of HH, FH, and Ti6Sn5 phases. During cooling, this

solid solution further decomposes into stable mixture consist-

ing of HH, FH, and Ti6Sn5 phases at room temperature with

FH and HH being dominant phases, similar to the observation

of Chai and Kimura.32 It is worth mentioning here that the

phase diagram of TiNiSn also suggests that phase separation

could occur in alloys with compositions lying between FH

and HH, as experimentally observed in the present case. For

the present composition of Ti9Ni7Sn8, local segregation

occurs in such a way that the effective composition lies

between HH and FH. The excess amount of Ti, Ni, and Sn

might get partly stabilized as Ti6Sn5 with finite but small dis-

solution of Ni in the precipitates of Ti6Sn5. The exact mecha-

nism of phase separation through decomposition in Ti9Ni7Sn8

is not clear and requires a detailed investigation.

The thermal and electronic transport measurements were

carried out to understand the impact of such in-situ fabricated

multi-phase material on thermoelectric properties. In Fig. 3,

we have displayed the temperature dependence of the thermo-

electric parameters of the normal HH TiNiSn and bulk nano-

composite Ti9Ni7Sn8. The temperature dependent electrical

conductivity r (T) of TiNiSn HH reveals semiconducting

FIG. 1. X-ray diffraction patterns of (a) TiNiSn HH, (b) Ti9Ni7Sn8 HH de-

rivative, and (c) Rietveld refinement of Ti9Ni7Sn8 showing a composite

phase materials. The difference curve is shown in bottom as green solid line.

Vertical ticks are Bragg peak positions out of which the upper ticks (blue)

correspond to the HH, middle ticks (red) for FH, and lower ticks (black) are

for Ti6Sn5 phase.
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behavior as it increases monotonically with rising temperature

(Fig. 3(a)), while r (T) of bulk nanocomposite Ti9Ni7Sn8 [Fig.

3(a)] remained nearly constant up to 425 K, suggesting a typi-

cal semimetallic behavior, but a semiconductor like electronic

transport was observed beyond this temperature. Fig. 3(b) dis-

plays temperature dependent Seebeck coefficient aðTÞ of the

normal HH TiNiSn and Ti9Ni7Sn8 nanocomposite.

Interestingly, despite to the increase in r (T) at room tempera-

ture for bulk nanocomposite, an increase in aðTÞ at room tem-

perature was also observed which is rather unusual. Moreover,

aðTÞ increases with rising temperature up to 550 K irrespec-

tive to the usual trend of decreasing r (T). With increasing

temperature beyond 550 K, the aðTÞ decreases. This decrease

in aðTÞ at high temperature beyond 550 K is attributed due to

thermally excited minority charge carriers (holes) similar to

the case of several semiconducting materials.38,39 The detailed

mechanism of increased aðTÞ at room temperature will be

discussed in forthcoming part of the manuscript. The stability

of the material and consistency of electronic transport have

been verified by measuring the aðTÞ and the r(T) with the

samples which was kept at room temperature for 12 weeks

and also with sample annealed at 800 �C for 24 h and the

results are presented in the inset of Figs. 3(b) and 3(a), respec-

tively. The temperature dependent aðTÞ and aðTÞ were

observed to be consistent in values and also in trends, present-

ing the material to be most stable, reproducible, and robust in

nature. The power factor computed is presented in Fig. 3(c)

showing only a marginal improvement by 6% in bulk nano-

composite compared to the normal HH counterpart. We do

also observe that the value of j for bulk nanocomposite is also

reduced significantly which is about 40% in comparison to

that of the normal bulk HH sample as evidenced in Fig. 3(d).

The low j of the bulk nanocomposite sample may be due to

enhanced heat carrying phonon scattering by the nanoscale

TABLE I. Detail of Rietveld analysis of the phases present in bulk nanocomposites Ti9Ni7Sn8 samples.

Phase 1: TiNiSn half Heusler Phase 2: TiNi2Sn full Heusler

Space group: F-43m Space group: F m-3m

Cell (Å): a¼ 5.9202(3) Cell (Å): a¼ 6.0840(16)

Phase fraction: 97.1(1)%, density: 7.21056 g/cm3 Phase fraction: 2.62(0.19)%, density: 8.37506 g/cm3

Overall temperature factor: 0.55355 Overall temperature factor: 0.59933

ETA (p-Voigt): 0.3564 ETA (p-Voigt): 0.3278

Halfwidth U, V, W: 0.43576, �0.07842, 0.08150 Halfwidth U, V, W: 0.43587, �0.07830, 0.07987

X parameter: 0.0054, FWHM (D2hmin): 0.285� X parameter: 0.0051, FWHM (D2hmin): 0.282�

Bragg R-factor: 3.13, RF-factor: 1.67 Bragg R-factor: 10.9, RF-factor: 9.7

Atom X Y Z occ Atom X Y z occ

Sn 0.25 0.25 0.25 1 Sn 0 0 0 1

Ti 0.75 0.75 0.75 1 Ti 0.5 0.5 0.5 1

Ni 0 0 0 1 Ni 0.25 0.25 0.25 1

Phase 3: Ti6Sn5

Space group: P63/mmc Atom x y Z occ

Cell (Å): a¼ b¼ 8.991(5), c¼ 5.769(5)

Phase fraction: 0.28(3)%, density: 7.24478 g/cm3 Sn1 0 0 0 1

ETA (p-Voigt): 0.3564 Sn2 0.3333 0.6667 0.25 1

Overall temperature factor: 0.42307 Sn3 0.795 0.59 0.25 1

Halfwidth U, V, W: 0.43587, �0.07830, 0.08162 Ti1 0.5 0 0 1

X parameter:0.017931, FWHM (D2hmin): 0.287� Ti2 0.165 0.33 0.25 1

Bragg R-factor: 16.9, RF-factor: 9.5

Global user-weighted Chi2 (Bragg contrib.): 3.24

FIG. 2. (a) TEM of Ti9Ni7Sn8 showing

a composite microstructure of FH (dot-

ted circle), HH (region A), and small

impurities of Ti6Sn5 (region B). (b)

The SAED corresponding to region A

confirms single crystalline HH phase

with zone axis [1�12]. (c) HRTEM

image from dotted region showing two

phase interface. The FFT from a region

marked as rectangle (shown in the

inset) presents FH phase with zone

axis [1�12]. (d) The EDS data obtained

from FH grain indicates composition

of FH phase. (e) SAED pattern taken

from the grain marked as dotted area B

reveals a ring pattern which corre-

sponds to the HH phase and Ti6Sn5

phase.
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precipitates of FH and Ti6Sn5 and the mesoscale grain boun-

daries in Ti9Ni7Sn8 as can be seen from the microscopic

images presented in Fig. 2(a). The lattice thermal conductivity

(jl) was estimated by subtracting the electronic thermal con-

ductivity (je) from the j and presented in Fig. 3(e). The je

was obtained from Wiedemann-Franz relation. It is observed

that the jl decreases with increasing temperature displaying 1/

T dependence similar to the normal bulk crystalline mate-

rial.34,35 The variation in ZT as a function of temperature is

shown in Fig. 3(f). A significant enhancement in ZT � 0.32 at

773 K was obtained which is about 60% higher than that of

bulk TiNiSn HH counterpart. We attribute that this enhance-

ment in ZT is primarily due to drastic reduction in j.

In order to understand the mechanism of increasing aðTÞ
and rðTÞ at room temperature simultaneously, Hall coeffi-

cient of the samples at 300 K has been measured. These data

yield a carrier concentration of �5.9� 1019/cm3 and a mo-

bility of �73 cm2/V s for normal TiNiSn HH. However, a

carrier concentration of �2.8� 1019/cm3 and mobility of

�210 cm2/V s was noted for the bulk nanocomposite

Ti9Ni7Sn8 indicating a decrease in carrier concentration and

increased mobility for bulk nanocomposite.

The observed increase in aðTÞ of the bulk nanocomposite

at room temperature compared to that for bulk normal HH is

consistent with its lower carrier density as revealed by Hall

measurements. Thus, we believe that observed reduction in

carrier density of nanocomposite at room temperature is sug-

gestive of the filtering (trapping) of low energy carrier at

energy barrier generated at HH/FH interfaces similar to the

other reports which has been verified experimentally and theo-

retically by several groups.23,27,36–38 While increased mobility

of carriers in the bulk nanocomposite Ti9Ni7Sn8 drives the

carriers injecting through metallic FH inclusions24,25 making

the material more electrically conducting and hence leads to

an increase in electrical conductivity at around 300 K. Thus,

the simultaneous increase in the rðTÞ and aðTÞ could be

attributed to the electron injection phenomenon and scattering

of electron at potential barrier generated by HH and FH inter-

faces. A plausible explanation of this increasing Seebeck

coefficient (a) of a composite may also be given in the frame-

work of a model related to the scattering factor and reduced

Fermi energy as proposed by Nolas et al.39 where a is

expressed as

a ¼ p2

3

jB

e
r þ 2

3

� �
1

n

� �
; (1)

where jB is the Boltzmann constant, r is the scattering factor,

and n is the reduced Fermi energy.

We argue that a significant decrease in the carrier con-

centration in bulk nanocomposites Ti9Ni7Sn8 as observed

from the Hall data, reduces the Fermi energy and conse-

quently resulted in an increased Seebeck coefficient.40

Though mechanism of increased aðTÞ and rðTÞ at room tem-

perature has been presented here, however, understanding on

the aðTÞ and rðTÞ variation with higher temperature requires

high temperature Hall measurement which will be the future

avenue of this research and needs to be investigated further.

Thus, mechanisms for enhancing the electronic properties is

primarily interface electron scattering,23,27,36–38 electron

injection through metallic inclusions,24,25 and direct depend-

ence of Seebeck coefficient on reduced Fermi energy, n as

suggested by Nolas et al.40

In conclusion, a generic composition Ti9Ni7Sn8 with

VEC¼ 17.25, synthesized by arc melting followed by SPS

resulted to an in-situ bulk nanocomposite consisting of HH,

FH, and a traces of nano-sized Ti6Sn5 phase. This micro-

structural modification derived due to varying VEC in pres-

ent HH derivative leads to achieve a high ZT � 0.32 at

773 K, which is 60% higher as compared to that of the nor-

mal bulk TiNiSn HH counterpart. The observed increase in

aðTÞ and rðTÞ at room temperature is attributed to the elec-

tron scattering/filtering and electron injection phenomenon,

respectively, while the reduction in thermal conductivity is

due to scattering of wide range of heat carrying phonons

ranging from nanoscale inclusion of FH and mesoscale grain

of HH and also notable mesoscale grain boundaries in

Ti9Ni7Sn8. Our findings rejuvenates the search for high ZT

thermoelectric materials by varying VEC of transition metal

based semiconductors in wider family of XYZ (X¼Ti, Zr,

Hf; Y¼Ni, Co; Z¼Sn, Sb) with composition X1þxY1�xZ

where significant reduction in thermal conductivity can be

optimized. Further controlling the distribution of metallic

inclusions by fine tuning the growth parameters through

appropriate thermal treatment and with or without doping

could be a promising future strategy for enhancing the ZT of

several compositions of half-Heusler of XYZ family.
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