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The current work demonstrates efficient utilization of 2D-MoO3 nano-flakes as a hole injection layer (HIL) in

organic light emitting diodes (OLEDs). Nano-flakes are synthesized using an organic solvent-assisted

grinding and sonication method of liquid exfoliation for MoO3, and 8–16 nm thick flakes are obtained.

The effect of solar illumination on the hole injection properties of these nano-flakes is then studied by

exposing the nano-flakes for 0, 15, 30, 45, 60 and 120 min and using them as HIL in green OLED. The

device results are then compared with the OLED having bulk MoO3 as HIL. OLEDs with nano-flakes as

the HIL have shown better performance than the OLED with bulk MoO3 as the HIL due to the better

semiconducting properties in the nano-flake phase. The luminous intensity is increased by increasing the

duration of irradiation and was found to be optimum in case of nano-flakes irradiated for 30 or 45 min

and then started to decrease with the increase of duration of irradiation. The current density in the

OLEDs with nano-flakes as the HIL shows a switching from high resistance to low resistance; however,

the sequential pattern of switching voltage was missing with the duration of irradiation. The current

density also decreased for nano-flakes with 60 and 120 min of irradiation. Transition from the

semiconducting to metal nature of nano-flakes by solar irradiation is suggested to be the reason behind

this decrease in current density and luminous intensity with a longer duration of illumination.
Introduction

Two dimensional (2D) nanostructures exhibit superior crystal-
line, optical and electronic properties in comparison to bulk
materials.1–6 Graphene is one of the most widely investigated
examples of 2D nanostructures and by far remains a preferred
choice as an ideal 2D material.2,7–10 However, the absence of
band gap in graphene 2D sheets has limited its application, and
alternative 2D materials are required.11–17 Recent advances in
the eld of synthesis led to the realization of 2D metal oxide
nano-structures, which by default possess an optical band gap,
leading to interesting optical properties.1,3,4,6 Stable 2D semi-
conducting oxide of tungsten and molybdenum has been
investigated widely and utilized for sensing, eld emission and
several other applications.18–25
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MoO3 2D nano-akes are found to be of particular interest
due to their potential applications. MoO3 nano-akes have been
used for hydrogen gas (H2) sensing, photoluminescence and
eld emission.24–26 Recently, Alsaif et al.27 demonstrated tunable
plasmon resonances from 2D MoO3 nano-akes. These reports
have shown the potential of MoO3 nano-akes; however, their
application in devices is required to further prove their poten-
tial. Bulk MoO3 has been successfully used in organic electronic
devices such as organic light emitting diodes (OLEDs) and
organic photovoltaics as a hole injection and extraction layer,
where the semiconducting properties of MoO3 has improved
the efficiencies of these devices signicantly.28–34 Moving from
bulk to 2D nano-akes is expected to improve the crystalline
structure of MoO3, which thereby is expected to improve the
semiconducting properties. This has motivated us to utilize the
2DMoO3 nano-akes as the hole injection layer (HIL) in OLEDs.

Several methods for the synthesis and fabrication of 2D
MoO3 nano-akes have been reported in recent years. The most
successful methods are the modied hot plate method,25 the
plasma assisted paste sublimation process,35 the organic
solvent assisted grinding and sonication method,26,27 etc. Here,
we adapted the organic solvent-assisted grinding and sonica-
tion method of liquid exfoliation to bulk MoO3 to obtain 2D
nano-akes. Alsaif et al.27 observed that the controlled solar
illumination of a 2D MoO3 nano-ake suspension alters its
RSC Adv., 2015, 5, 8397–8403 | 8397
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Fig. 1 (a) Optical images of nano-flakes suspension irradiated for
different duration of time. (b) AFM image of nano-flakes deposited by
three repeated coatings over an ITO coated substrate and used as a
HIL in OLEDs. (c) AFM image of single flake showing the thickness and
lateral dimensions.
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properties drastically, according to characterizations by Raman,
X-ray diffraction, and X-ray photoelectron spectroscopy (XPS).
They observed that the solar illumination of these nano-akes
decreases the semiconducting properties and induces metallic
properties as the duration of exposure is increased. Here, to
observe the effect of solar illumination on the properties of 2D
MoO3 nano-akes, OLEDs with nano-akes as the HIL exposed
for different durations have been fabricated and their effects on
device characteristics are discussed.

Experimental
Synthesis of nano-akes

Molybdenum trioxide (99.99%) powder (Sigma-Aldrich) was
used for the synthesis of 2D nano-akes using the method
previously reported.26,27 Nano-akes were prepared using
organic solvent assisted grinding in which 1 g of MoO3 powder
was ground with 0.2 ml acetonitrile for 1 h. The resultant
powder was then dispersed in a 15 ml mixture of ethanol and
water in 1 : 1 composition and sonicated for 3 h. The solution
was then centrifuged at 6000 rpm for 45 min at room temper-
ature, and a light yellow/blue supernatant liquid was collected
that contained a high concentration of 2D MoO3 nano-akes.
The supernatant solution was distributed in six Agilent
sample tubes and then irradiated with a homemade solar
simulator at 100 mW cm�2 power for different time durations of
15 min, 30 min, 45 min, 60 min and 120 min.

Characterization of nano-akes

2D MoO3 nano-akes were characterized according to their
surface morphology, absorption spectra and Raman spectra.
Surface morphology was studied using atomic force microscopy
(AFM; NTMDT Solvar Pro P47). Morphological measurements
were performed for the nano-akes spin coated on indium tin
oxide (ITO) coated glass substrates. The UV-Vis absorption
spectrum was recorded in solution form using a Shimadzu UV-
Vis spectrophotometer, model no. UV-2401 PV. The Raman
spectra were acquired using a Renishaw inVia Reex Raman
spectrometer, UK, with an excitation source of 514.5 nm and 2.5
mW power.

Device fabrication

OLEDs were fabricated on ITO coated glass substrates having
a sheet resistance of 20 U ,�1 and a thickness of 120 nm.
Substrates were rst cleaned using deionized water, acetone,
trichloroethylene and isopropyl alcohol for 20 min each
using an ultrasonic bath and dried in vacuum oven. Prior to
the deposition of organic layers, 2D nano-akes were
repeatedly spin coated twice on the cleaned ITO coated
substrate at 2000 rpm for 1 minute and then dried at 120 �C
temperature for 1 hour. The device structure was ITO (120
nm)/a-NPD (35 nm)/5% Ir(ppy)3 doped CBP (30 nm)/BCP (6
nm)/Alq3 (28 nm)/LiF (1 nm)/Al (150 nm). Tris (8-hydroxy-
quinoline) aluminium (Alq3) (Sigma-Aldrich) and N,N0-di-[(1-
naphthalenyl)-N,N0-diphenyl]-(1,10-biphenyl)-4,40-diamine (a-
NPD) (Sigma-Aldrich) were used as the electron and hole
8398 | RSC Adv., 2015, 5, 8397–8403
transporting layers. 2,9 Dimethyl 4,7 diphenyl 1,10 phenan-
throline (BCP) (Sigma-Aldrich), which has a high ionization
potential (6.5 eV), has been used as a hole blocking layer, and
lithium uoride (LiF)/aluminium (Al) and ITO have been
used as the cathode and anode, respectively. Organic layers
were deposited under a base pressure of 4 � 10�6 torr at a
deposition rate of 2.4 nm min�1. The thickness of the
deposited layers was measured in situ by a quartz crystal
thickness monitor and reconrmed by variable angle ellips-
ometry. The size of each pixel was 3 mm � 4 mm. The elec-
troluminescence (EL) spectrum was measured with a high
resolution spectrometer (Ocean optics HR-2000 CG UV-NIR).
The current density–voltage–luminescence (J–V–L) charac-
teristics were measured with a luminance meter (LMT-1009)
interfaced with a Keithley 2400 programmable current–
voltage digital source meter. All measurements were carried
out at room temperature under ambient conditions.
Results and discussion

Fig. 1a shows the optical images of the nano-ake suspension at
different solar irradiation conditions. The suspension was
initially found to be of light blue color and gradually turned into
dark blue upon increase of irradiation time, and the effect of
solar radiation was found to be similar to that previously
reported.27 As the intended utilization of these nano-akes is as
a HIL in OLEDs, the surface morphology of nano-akes
deposited on ITO coated glass substrates was rst character-
ized using AFM. A high density of nano-akes is required for
their efficient utilization as a HIL in OLEDs. To accomplish a
high density, nano-ake solution was repeatedly coated three
times on the substrates, and the AFM image is shown in Fig. 1b.
The lling fraction of nano-akes was calculated from the AFM
image and found to be�30%, which was relatively small for one
and two layer coating (Fig. S1†).38 Fig. 1c depicts the AFM image
for a single ake, also showing the thickness and lateral
dimension prole. The thickness of akes was found to be in
the range of 8–16 nm (constituting 20–40 mono-layers), and the
lateral dimensions were found to be 60–80 and 80–120 nm,
respectively. The thickness dimension of the akes is found to
be nearly 10 times smaller than the lateral dimension; there-
fore, the akes can be regarded as 2D akes.
This journal is © The Royal Society of Chemistry 2015
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Fig. 3 Luminescence–voltage characteristics for OLEDs with
2D-MoO3 nano-flakes as the hole injection layer with different dura-
tions of irradiation. Data for OLED with bulk MoO3 are also included.
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2D-MoO3 nano-akes were implemented as the HIL in
OLEDs. Green OLEDs were fabricated with MoO3 nano-akes
prepared using different irradiation times (tirr). Devices were
designated as device 1, 2, 3, 4, 5 and 6 for tirr ¼ 0, 15, 30, 45, 60
and 120 min, respectively, and for comparison, a device with
bulk MoO3 as the injection layer was also prepared. Fig. 2 shows
the images of the biased OLEDs without HIL, reference device,
and devices 1–6. All of the devices were found to be bright and
efficient. The luminous intensity of the devices at a current
density of 1000 A m�2 is also mentioned in the gure. It can be
seen that the devices with nano-akes exhibit superior lumi-
nous intensity than the device without a HIL and the device with
bulk MoO3 as the HIL. The EL spectrum of OLEDs was found to
be unaffected by the use of nano-akes as the HIL (Fig. S3†).38

Fig. 3 depicts the V–L characteristics for these devices. The
device with the bulk MoO3 interface layer and Device 1 have
nearly same values of luminous intensity over the entire voltage
range. This indicates that the device with 2D-MoO3 nano-akes
has the same effect on the luminescence as bulk MoO3. As the
2D-MoO3 nano-akes were irradiated and used in device 2, the
luminous intensity has increased signicantly. The increase in
luminescence is nearly 1.3–1.4 times that of device 1. Further,
device 3 with 2D-MoO3 nano-akes with tirr ¼ 30 min as the HIL
has a higher luminous intensity in comparison to device 2, and
the increase in luminous intensity is about 1.6–1.7 times that
for device 1 over the entire region of voltage. The luminous
intensity is then saturated with 2D-MoO3 nano-akes with tirr ¼
45 min for device 4. 2D-MoO3 nano-akes with increased tirr to
60 and 120 min led to a decrease in luminous intensity in
devices 5 and 6 and the luminous intensity became almost
equal to that of the device with a bulk MoO3 layer. These results
indicate that the device characteristics with 2D-MoO3 nano-
akes as the interface layer strongly depend on the duration
of irradiation.

For the complete analysis of device characteristics, J–V
characteristics were also measured for these devices and are
depicted in Fig. 4. Unlike the L–V characteristics, the device with
bulk MoO3 layer possesses a higher current density in
comparison to the other devices. Also, as the bulk MoO3 is
Fig. 2 Images of biased OLEDs (at an operating current density of
1000 A m�2) (a) without HIL, (b) with bulk MoO3 as HIL and with nano-
flakes as HIL, where pictures (c–h) correspond to the irradiation times
of 0, 15, 30, 45, 60 and 120 min, respectively. Values of luminous
intensity at 1000 A m�2 are also included in each image.

This journal is © The Royal Society of Chemistry 2015
replaced by the 2D-MoO3 nano-akes without irradiation, the
current density is decreased by almost one order of magnitude
in the high voltage region (V > 15 V). For V < 11 V, the current
density is almost equal to the current density of the device with
bulk MoO3. This indicates that the total resistance of the device
is lower in the low voltage region and increased in the high
voltage region.

One interesting fact to be noted is that this increase in
resistance has no effect on the luminous intensity, as can be
seen from Fig. 3. A similar pattern has also been observed in
device 2, where the total resistance of the device switched from a
high value to a low value aer 9 V. Similar to that for device 1,
this switching has not affected the luminous intensity of the
device. Device 2 has a higher ratio of high resistance to low
resistance values. As the tirr is increased to 30 and 45 min in
devices 3 and 4, this switching from the high resistance to low
Fig. 4 Current density–voltage characteristics for OLEDs with
2D-MoO3 nano-flakes as the hole injection layer with different dura-
tions of irradiation. Data for OLED with bulk MoO3 are also included.

RSC Adv., 2015, 5, 8397–8403 | 8399
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resistance region disappears, and also the current density
values are highest for these two devices for voltages higher than
15 V. Further increases in the tirr in devices 5 and 6 decreased
the current density signicantly. It is evident from the luminous
intensity data that even the total device resistance varies among
devices 1–6, and all the devices have similar or better luminous
intensities in comparison to the reference device with bulk
MoO3 as the interface layer. This strongly suggests the improved
hole injection properties of nano-akes in comparison to bulk
MoO3.

Fig. 5 depicts the J–L characteristics for these devices in order
to provide a clearer picture of the device results. It is evident
from the gure that all devices with 2D-MoO3 nano-akes have a
higher ratio of luminous intensity–current density in compar-
ison to the device with bulk MoO3 interface layer. The slope of
J–L characteristics represent the current efficiency of the device,
and it can be seen from the gure that it has increased in the
case of device 1 in comparison to the reference device. However,
the efficiency started to decrease in the high current density
region, where the luminous intensity is almost invariant with
the increase in voltage. Device 2 possesses a higher efficiency in
comparison to device 1 in the low current density region, while
it follows the same pattern in the high voltage region. Devices 3
and 4 have a slightly lower efficiency in comparison to devices 1
and 2; however, the efficiency remains invariant in these devices
with changes in current density. Devices 5 and 6 have shown
relatively lower efficiency in comparison to devices 1–4 in the
whole current density region. The highest efficiency has been
achieved in the cases of device s1, 2, 3 and 4. Combining the
results for the V–L, J–V and J–L characteristics, it can be
concluded that devices with 2D-MoO3 nano-akes show supe-
rior performance in comparison to the device with bulk MoO3,
and the device efficiency is dependent on the irradiation time.
Device 4 can be considered optimum in terms of current density
and luminous intensity.
Fig. 5 Current density–luminous intensity characteristics for devices
1, 2, 3, 4, 5 and 6 with 2D-MoO3 nano-flakes irradiated for 0, 15, 30, 45,
60 and 120 min as the hole injection layer. For reference, data for bulk
MoO3 as the HIL are also included.

8400 | RSC Adv., 2015, 5, 8397–8403
For further quantication of the device performance, the
current efficiency is plotted as a function of voltage in Fig. 6. It
can be seen from the gure that devices with nano-akes exhibit
better performance than the device with bulk MoO3 as the HIL.
At 15 V, the current efficiency has increased with nano-akes in
comparison to the bulk MoO3, and it further increases with the
duration of irradiation of up to 45 min when it starts to
decrease. The current efficiency is highest for the 45 min
duration of irradiation.

These observations can be explained on the basis of the
reported transition of 2D-MoO3 nano-akes from semi-
conductor to metal phase upon increasing the duration of
irradiation.27 The starting material in the preparation of nano-
akes is a-MoO3, which is an n-type semiconductor and thus
acts as an efficient HIL at the ITO/HTL interface. 2D-MoO3

nano-akes possess a more crystalline form of a-MoO3 in
comparison to bulk MoO3.25,27 Therefore, it serves as a better
HIL in comparison to bulk MoO3. As the chemically synthesized
nano-akes are irradiated, the injection properties increase,
which is indicative of the better semiconductor behavior of
a-MoO3. To conrm this, we have measured the Raman spectra
of 2D-MoO3 nano-akes without irradiation and with tirr ¼ 15
min. Fig. 7 shows the Raman spectra for these nano-akes
coated on Si substrates. Raman peaks of Si have been ltered
in this gure for better observation. It can be seen from the
gure that Raman peaks have higher intensities (at 304, 427,
617 and 671 cm�1) for irradiated nano-akes. Fig. 7 also shows
the Raman spectra of MoO3 nano-akes with tirr ¼ 120 min and
clearly shows that all the peak intensities are reduced signi-
cantly in this lm. This may be the reason behind the decrease
in efficiency for devices 5 and 6, for which increased irradiation
reduced the semiconducting properties of nano-akes. It has
been observed by Alsaif et al.26 that the irradiation of a-MoO3

causes formation of the Mo5+ oxidation state by a possible
reduction of MoO3 to Mo4O11. Mo5+ has a lower binding energy
in comparison Mo6+ (formed in case of MoO3) and therefore
Fig. 6 Current efficiency–voltage characteristics for devices 1, 2, 3, 4,
5 and 6 with 2D-MoO3 nano-flakes irradiated for 0, 15, 30, 45, 60 and
120 min as the hole injection layer. For reference, data for bulk MoO3

as the HIL are also included.

This journal is © The Royal Society of Chemistry 2015
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Fig. 7 Raman spectra for 2D-MoO3 nano-flakes irradiated for 0, 15
and 120 min duration and deposited on Si substrates. For clear
observation, the peak due to Si is filtered.
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represents the metallic state. It was also been observed by the
authors by X-ray photoelectron spectroscopy (XPS) that the
intensity of Mo5+ increases and that of Mo6+ decreases with an
increase in the duration of irradiation. The metallic state of 2D-
MoO3 nano-akes will therefore act as charge trapping center at
the ITO/HTL interface, similar to the case reported for gold
nano-particles used in polymer OLEDs.36,37 This trapping and
de-trapping of charge carrier may be the reason for switching
from low to high resistance regions in devices with nano-akes.
However, the switching has not been found to follow any
specic pattern in our devices, which could be due to the low
coverage of 2D-MoO3 nano-akes.

It has also been observed by Alsaif et al.27 that upon irradi-
ation, MoO3 nano-akes start to possess localized surface
plasmon resonance (LSPR) identied as an absorption peak in
near infra-red (NIR) region. This peak was found to be depen-
dent on the duration of irradiation. Therefore, the UV-Vis
spectra were measured for the 2D MoO3 nano-akes with
Fig. 8 UV-Vis spectra recorded for 2D MoO3 nano-flakes irradiated
for 0, 15, 30, 45, 60 and 120min. Inset shows themagnified view of the
NIR region.

This journal is © The Royal Society of Chemistry 2015
different tirr in solution form as depicted in Fig. 8. The inset of
this gure shows the magnied view of the NIR region (the
region of interest). It is evident from this gure that for the 60
and 120 min durations of exposure, the 2D MoO3 nano-akes
start to show the LSPR peaks in the NIR region. This supports
our device results in which the current density decreases for the
2D MoO3 nano-akes having a tirr of 60 and 120 min. However,
our UV-Vis spectra were found to be a little different from those
observed by Alsaif et al.27 In their results, they started to see
LSPR with 5 min exposure of nano-akes. The reason behind
this discrepancy may be the different experimental conditions
and different size of nano-akes.

Further, we have also measured the work function of
2D-MoO3 nano-akes (tirr ¼ 120 min) deposited on ITO coated
glass substrates by surface Kelvin probe microscopy using a
gold tip, and the observed signals are shown in Fig. S2(a) and
(b).†38 The work function has decreased upon deposition of
nano-akes with tirr ¼ 120 min, which further explains the
device results and justies the decrease in current in the case of
device 6. Generally, semiconducting MoO3 increased the work
function of ITO; however, for higher irradiation times, MoO3

nano-akes have acquired ametallic state, which could lead to a
reduction of work function because the metallic form of Mo has
lower value of surface potential in comparison to ITO. The
decrease in work function was found to be nearly 160 MeV,
which resulted in a higher interface resistance for nano-akes
with a higher duration of irradiation. When nano-akes are
used in place of bulk MoO3, the current efficiency of the device
is increased from 0.6 to 1.22 Cd A�1 at 15 V, which is expected
due to the improved semiconducting nature in the nano-phase.
As the irradiated nano-akes are used, the current efficiency is
further increased to 2.36, 3.05 and 4.3 Cd A�1 for 15, 30 and 45
min of irradiation, respectively. The increasing pattern of
current efficiency with duration of irradiation is a signature of
the improved semiconducting nature of nano-akes with irra-
diation as already discussed with the help of Raman spectra. A
further increase in the irradiation duration to 60 and 120 min
transforms the nano-akes into metallic form as depicted from
the LSPR peaks observed in Fig. 8. The metallic nature of nano-
akes reduces the work function of ITO as measured by Kelvin
probe and therefore deteriorates the injection properties. This
leads to a decrease in current efficiency to 3.42 and 2 Cd A�1 for
60 and 120 min irradiated nano-akes, respectively. Therefore,
the effect of transition from semiconducting to metallic nature
of nano-akes is clearly observed in the devices.

In conclusion, the current work demonstrates the use of 2D
MoO3 nano-akes as an efficient HIL for OLEDs. Nano-akes
irradiated for 0, 15, 30, 45, 60 and 120 min with solar power
were used for this study, and the device results with nano-akes
as the HIL were compared with that with bulk MoO3 as the HIL.
OLEDs with nano-akes irradiated for 0, 15, 30 and 45 min were
found to be superior in terms of current density and lumines-
cence, and those with nano-akes irradiated for 60 and 120 min
were inferior. Nano-akes possess better semiconducting
properties than bulk MoO3, which is demonstrated also by the
Raman spectra of irradiated nano-akes. It has been observed
that the semiconducting properties of nano-akes is increased
RSC Adv., 2015, 5, 8397–8403 | 8401
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by irradiation up to 45 min, and then nano-akes start to
possess more metallic properties. This has also been identied
by a LSPR peak, which started to appear for nano-akes with 60
min irradiation time and became stronger when nano-akes
were irradiated for 120 min. The work function of ITO modi-
ed by nano-akes irradiated for 120 min was measured using
Kelvin probe microscopy, and it was found to be lower by 0.16
eV in comparison to that of bare ITO. This decrease in work
function by MoO3 nano-akes irradiated for 60 and 120 min
leads to a decrease in current density.
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