Puri, Nidhi and Niazi, Asad and Srivastava, Avanish K. and -, Rajesh (2014) Synthesis and Characterization of Reduced Graphene Oxide Supported Gold Nanoparticles-Poly(Pyrrole-Co-Pyrrolepropylic Acid) Nanocomposite-Based Electrochemical Biosensor. Applied Biochemistry and Biotechnology, 174 (3). pp. 911-925. ISSN 0273-2289

[img] PDF - Published Version
Restricted to Registered users only

Download (960Kb) | Request a copy


A conducting poly(pyrrole-co-pyrrolepropylic acid) copolymer nanocomposite film (AuNP-PPy-PPa) incorporating gold nanoparticles (AuNP) was electrochemically grown using a single step procedure over electrochemically reduced graphene oxide (RGO) flakes deposited on a silane-modified indium-tin-oxide (ITO) glass plate. The RGO support base provided excellent mechanical and chemical stability to the polymer nanocomposite matrix. The porous nanostructure of AuNP-PPy-PPa/RGO provided a huge accessible area to disperse AuNP, and it avoided metallic agglomeration within the polymer matrix. The AuNP-PPy-PPa/RGO was characterized by high-resolution transmission electron microscopy (HRTEM), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and electrochemical techniques. The pendant carboxyl group of AuNP-PPy-PPa/RGO was covalently bonded with myoglobin protein antibody, Ab-Mb, for the construction of a bioelectrode. Electrochemical impedance spectroscopy technique was used for the characterization of the bioelectrode and as an impedimetric biosensor for the detection of human cardiac biomarker, Ag-cMb. The bioelectrode exhibited a linear impedimetric response to Ag-cMb in the range of 10 ng mL(-1) to 1 mu g mL(-1), in phosphate-buffered solution (PBS) (pH 7.4, 0.1 M KCl) with a sensitivity of 92.13 Omega cm(2) per decade.

Item Type: Article
Additional Information: Copyright for this article belongs to M/S Humana Press.
Uncontrolled Keywords: Conducting polymer Electrochemical sensing Graphene mmunoreaction Antibody
Subjects: Biochemistry & Molecular Biology
Medical Laboratory Technology
Depositing User: Dr. Rajpal Walke
Date Deposited: 23 Nov 2015 05:43
Last Modified: 23 Nov 2015 05:43
URI: http://npl.csircentral.net/id/eprint/1582

Actions (login required)

View Item View Item