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The impact of variation in the relative fractions of the ferromagnetic metallic and

antiferromagnetic/charge ordered insulator phases on the supercooling/superheating transition in

strongly phase separated system, La5/8�yPryCa3/8MnO3 (y � 0.4), has been studied employing

magnetotransport measurements. Our study clearly shows that the supercooling transition

temperature is non-unique and strongly depends on the magneto-thermodynamic path through

which the low temperature state is accessed. In contrast, the superheating transition temperature

remains constant. The thermo-magnetic hysteresis, the separation of the two transitions and the

associated resistivity, all are functions of the relative fraction of the coexisting phases. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880725]

Phase separation (PS) is believed to be the key ingredient

of the physics of doped rare earth manganites.1–3 It dominates

the composition-temperature (x-T) diagram of intermediate

and low bandwidth manganites like Nd1�xSrxMnO3,3,4

Sm1�xSrxMnO3,5,6 and La1�x�yPryCaxMnO3.7–10 Amongst

these materials, La1�x�yPryCaxMnO3 has emerged as the pro-

totypical phase separated system and its different variants like

bulk single crystal, polycrystals, and thin films have been

investigated.7–16 The strong nature of the phase separation has

been established by the observation of (i) strong divergence of

the zero filed cooled (ZFC) and field cooled warming (FCW)

magnetization, (ii) pronounced hysteresis between the field

cooled cool (FCC) and FCW magnetization, and (iii) promi-

nent thermomagnetic hysteresis in the temperature and

magnetic field (H) dependent resistivity (q) measured in

cooling-warming cycles.7–16 A study by Uehara et al.7 has

shown the coexistence of sub-micrometer scale ferromagnetic

metallic (FMM) and antiferromagnetic/charge ordered insula-

tor (AFM/COI) clusters and that the latter is explicit in mag-

netotransport measurements only at y� 0.3. Consequently,

the electrical transport becomes percolative, which is evi-

denced by huge residual resistivity (q0) for y � 0.4 in the me-

tallic regime.7 The study of Ghivelder and Parisi8 on bulk

La5/8�yPryCa3/8MnO3 (y � 0.4) has shown that COI phase

appears at TCO� 230 K and subsequently acquires AFM and

FM spin order TN� 180 and TC� 80 K, respectively. Due to

the rapid spatial and temporal variations in the relative frac-

tion of the FMM and AFM/COI phases, large relaxation

effects are also observed.8 Further, the theoretical study by

Ghivelder and Parisi8 has predicted that interplay between

temperature and separation of the system from equilibrium

could create multiple blocked states. Sharma et al.9 studied

the same material and have established the existence of a liq-

uid like magnetic phase in the phase separated regime, which

transforms cooperatively to a randomly frozen glass like phase

at low temperature. The frozen glass like phase (termed as

strain glass) is believed to arise from the presence of marten-

sitic accommodation strain.9 Wu et al.10 have demonstrated

that in La5/8�yPryCa3/8MnO3 (y � 0.4) thin films the magnetic

liquid like phase exhibits a supercooled glass transition. This

glass transition is believed to arise due to the presence of the

accommodation strain caused by distinct structural symme-

tries of FMM and AFM/COI phases. Their study has also pro-

vided evidence in favour of the non-ergodic nature of the

magnetic liquid. Wu et al.10 have shown that non-ergodicity

appears when the long range cooperative strain interactions

hinder the cooperative dynamic freezing of the first-order

AFM/COI–FMM transition.9,10

The FCC-FCW and thermoresistive hysteresis are

regarded as signatures of supercooling and superheating tran-

sition of the magnetic liquid formed by competing FMM and

AFM phases in the presence of martensitic of accommoda-

tion strain and long range cooperative strain interactions.8–10

Despite the exhaustive investigations on different variants of

the La1�x�yPryCaxMnO3, the nature of the supercooling/

superheating transitions, e.g., their dependence on relative

fractions of FMM and AFM phases has not been probed

through electrical transport measurements. The different rel-

ative fractions of the FM/AFM phases at the beginning of

the magneto-thermodynamic process are expected to lead to

different thermodynamic paths and yield different supercool-

ing transition temperatures. Hence, it is important to investi-

gate the signature of different magneto-thermodynamic

paths in electrical transport. In this Letter, we report the elec-

trical transport studies on La5/8�yPryCa3/8MnO3 (y� 0.4)

epitaxial thin films. Our results demonstrate that of the two

observed insulator-metal transitions (IMTs), the lower one

caused by the supercooling of a magnetic liquid is

non-unique, while the upper on remains constant.

The La5/8�yPryCa3/8MnO3(y� 0.4) thin films were

grown by RF magnetron sputtering of a stoichiometric (2 in.)
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target in 200 mTorr of Ar þ O2 (80þ 20) mixture on single

crystal (001) SrTiO3 (STO) substrates maintained at

�800 �C. The lattice mismatch (e) between the target and

substrate is ��1.93% (e ¼ ðat � asÞx100=as where at and as

are the lattice parameters of the bulk target and substrate,

respectively) and hence the strain is tensile. In order to

achieve optimum oxygen content, the films were annealed at

�900 �C for 10 h in flowing oxygen.

The film thickness estimated from the X-ray reflectivity

data is �41 nm. The high resolution X-ray diffraction

(HRXRD; 2h-x scan, /-scan, and x-2h scan) confirmed the

epitaxial nature of the films and also showed that the film is

under tensile strain. The significantly reduced out-of-plane

lattice constant of the film is af¼ 3.7988 Å (abulk¼ 3.831 Å),

which confirms the presence of appreciable tensile strain.

The occurrence of the step-terrace features in the surface to-

pography further confirms the epitaxial nature of the films.

The temperature dependent magnetization (M-T) was

measured using ZFC, FCC, and FCW protocols. The ZFC,

FCC, and FCW data plotted in Fig. 1 show several interest-

ing features, viz., (i) huge irreversibility in the ZFC and

FCW curves, (ii) pronounced hysteresis between the FCC

and FCW curves, (iii) reversible behavior of FCC and FCW

curves below T � 26 K, (iv) a peak in the FCW M-T around

TP� 43 K, and (v) sharp drop in ZFC M-T curve around TP.

The ZFC-FCW irreversibility, which is distinct from that of

a representative spin glass state,17 is invariably observed in

phase separated manganites as a signature of cluster glass

state.18–20 The cluster glass state is prevalent in the intermedi-

ate bandwidth manganites having x� 1/218 or over a wide

range of divalent doping (x) in low bandwidth manganites19,20

and originates due to the coexistence of FMM and AFM/COI

phases below the Neel temperature TN. The sharp drop in the

ZFC curve observed at temperature marked TP is a signature

of cluster freezing. The prominent FCC-FCW hysteresis is

signature of the different magneto-thermodynamics of the sys-

tem in the two protocols and arises due to the global frustra-

tion created by the AFM/COI phase that increases the energy

of the system and also the degeneracy of the energy minima.

Hence, the origin of the non-ergodicity is traceable to the

AFM/COI phase, which alone can create frustration. The low

temperature (T< 26 K) reversible behavior of the FCC and

FCW has been regarded as a signature of an equilibrium state

attained in the FCC protocol by Ghivelder and Parisi9 and

could be related to the blocking of system or freezing of the

cluster glass. The increase in magnetization at T> 26 K is the

signature of unblocking of the system states, and hence, the

peak at TP� 43 K can be regarded as the onset of cluster

freezing.

The FM transition, determined from the derivative of M-T

data (inset of Fig. 1), occurs at TC � 117 K, TC
C � 63 K, and

TC
W � 120 K in the ZFC, FCC, and FCW protocols, respec-

tively. The protocol dependence of FM transition temperature

could be regarded as evidence of non-ergodicity. A signifi-

cantly lower value of FM transition temperature in FCC proto-

col can be considered as a consequence of supercooling,10

whereas the FCW FM transition at TC
W � 120 K can be taken

as the equilibrium FM transition. The COI and AFM transi-

tions are not explicit in the M-T data. This could be attributed

to defect induced quenching of AFM/COI in thin film

form.12–16

The drastic difference between the FM transition tem-

peratures in FCC and FCW protocols can be understood in

terms of the accommodation strain arising due to the distinct

structural symmetry of the coexisting FM (pseudocubic) and

AFM/COI (orthorhombic) phases.11,21 The accommodation

strain and the magnetic frustration induced by AFM order

would create multiple minima in the energy landscape of the

system and hence could hinder the nucleation of the equilib-

rium low temperature state. Such a scenario in turn could

give rise to a liquid like magnetic phase.9 The electrical

transport characteristics of the magnetic liquid phase should

depend on the relative fractions of FM and AFM/COI phases

at the instant from where the low temperature state is arrived.

Hence, IMT temperature (TIM) corresponding to liquid like

magnetic phase should be non-unique and depend on the

magneto-thermodynamic path used to access the low temper-

ature state of the system. In view of the variation in the rela-

tive fractions of FM and AFM/COI phases across TC
W, TIM

must be a function of the temperature (T*) corresponding to

the initial state of the magneto-thermodynamic process. This

was experimentally verified by temperature dependent resis-

tivity (q-T) measurement using a protocol in which the

magneto-thermodynamic cycle was started from a tempera-

ture (T*), which was achieved by cooling the sample from

room temperature to 6 K and subsequent warming up to T*.

q-T was measured during cooling and warming employing

the cycle T* ! 6 K ! T (T>TIM
W) at H¼ 0 and H¼ 10

kOe. In view of the M-T data present above, it is obvious

that each T* corresponds to a distinct ratio of FMM and

AFM/COI phases. Here, we would like to mention that the

impact of thermal cycling on the thermoresistive hysteresis,

IMT, and peak resistivity in phase separated manganites has

also been studied previously.22,23 Mahendiran et al.,22

employing a protocol of measurement different from the one

used in the present case, have shown that (i) the resistivity

close to and just below IMT is unstable, (ii) the resistivity

increases with respect to thermal cycling, and (iii) the q-T

FIG. 1. The temperature dependence of ZFC, FCC, and FCW magnetization

measured at H¼ 100 Oe. The inset shows the temperature derivative of the

ZFC, FCC, and FCW curves. Various transitional features are marked in the

figure.
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behaviour is hysteretic even when the sample is warmed

from just above the IMT. These studies have outlined the im-

portant role of strain and percolation in electrical transport in

phase separated manganites.

The full cycle (300 K! 6 K! 300 K) q-T taken during

cooling and warming (cooling and warming rate 1 K/min) is

plotted in Fig. 2(a). In the cooling cycle IMT occurs at TIM
C

� 64 K, where q drops by more than four orders of magni-

tude within a narrow temperature window. This is generally

attributed to the abrupt enhancement in the FMM fraction at

the cost of the AFM/COI.3 During the warming cycle, the

q-T curve shows a minimum at Tm � 45 K and IMT appears

at TIM
W � 123 K. The rapid rise in resistivity just below

TIM
W corresponds to the enhanced fraction of the AFM/COI.

The huge thermo-resistive hysteresis in the q-T curve and

large DTIM¼TIM
W � TIM

C � 59 K unravels the strongly

phase separated nature of the system. The TIM
C almost coin-

cides with the FCC TC
C � 63 K, while TIM

W � 123 K is very

close to TC
W � 120 K. It is believed that the drastically low-

ered TIM
C and TC

C is caused by supercooling of the phase

separated magnetic liquid consisting of FMM and AFM/COI

sub-lattices.7–13

The zero filed cooling and warming cycle q-T data

acquired after cooling from different T* is plotted in Figs.

2(b)–2(f). When the film is cooled down from T* � 97 K,

IMT not is observed in the cooling cycle. However, for all

higher values of T*, IMT appears in the cooling cycles at

temperature that we denote by which we denote by TIM
C*.

The value of TIM
C*for T* � 105 K, 113 K, 117 K, 122 K, and

143 K are observed to be 103 K, 95 K, 88 K, 79 K, and 69 K,

respectively. For values of T*� 170 K, the TIM
C*

saturates to

TIM
C � 64 K, the full cycle value. Interestingly, the warming

cycle IMT, TIM
W*

remains independent of T*. The field

(H¼ 10 kOe) cooling and warming cycle q-T data acquired

after cooling from different T* are plotted in Fig. 3. The full

cycle q-T shows TIM
C � 104 K and TIM

W � 133 K. At

H¼ 10 kOe, the cooling cycle IMT shows an increase of

40 K, which, however, is only 10 K in the warming cycle.

This could be attributed to the substantial suppression of

AFM induced frustration in the phase separated regime. For

T*¼ 105 K, no IMT was observed in cooling cycle, while

in warming cycle IMT was observed at TIM
W*� 133 K. The

absence of IMT for T*¼ 105 K shows that at this tempera-

ture the film has a dominant FMM fraction. For higher

T* (<TIM
W), e.g., 120 K and 127 K, IMT occurs at

TIM
C*� 119 K and 112 K, respectively, was observed in the

cooling cycle but the warming cycle IMT remained constant

at TIM
W*� 133 K (Fig. 3). For further higher values of

T*¼ 150 K, 200 K, and 300 K, both TIM
C*

and TIM
W*

remain

constant at 104 K and 133 K, respectively. The variation of

TIM
C*

and the corresponding peak resistivity measured in the

cooling cycle (qIMC) are plotted in Figs. 4(a) and 4(b),

respectively. From Fig. 4, it is clear that the relative fraction

of the FMM and AFM phases also controls the resistivity

(qIMC) at TIM
C*

. The difference of more than two orders of

magnitude in qIMC measured at H¼ 0 and 10 kOe clearly

reflects the colossal magnetoresistance effect. Another inter-

esting feature seen in the zero field warming q-T data is the

appearance (disappearance) of resistivity minimum qm (Tm)

FIG. 2. Temperature dependence of resistivity measured in zero magnetic

field in cooling and warming cycles after initial cooling to 6 K and subse-

quent warming to different T*.

FIG. 3. Temperature dependence of resistivity measured in a magnetic field

of H¼ 10 kOe in cooling and warming cycles after initial cooling to 6 K and

subsequent warming to different T*.
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for all T*� 143 K (�122 K). In the measurements carried

out at H¼ 10 kOe, no qm (Tm) is observed at all. When

the sample is cooled from a T* at which the either FMM is

in minority or absent, TIM
C* saturates to the lowest value

TC
C � 64 K and the resistivity minimum reappears. This

clearly shows that the AFM fraction is a key to the occur-

rence of resistivity minimum and is probably related to the

freezing of the strain glass state.

The existence of different TIM
C*

for different T*<TIM
W

is an unambiguous signature of non-ergodicity, which in the

present case arises due the existence of different energy con-

figuration for each magneto-thermodynamic path. At

T*>TIM
W, the fraction of FMM (AFM/COI) phase

decreases (increases), leading to dilution of the competitive

phase coexistence tendency and therefore no modulation of

the IMT. The results presented above clearly show that the

supercooling transition temperature is strongly dependent on

T*, i.e., on the relative fraction of the two coexisting phases

(FMM and AFM/COI) and hence the degree of magnetic

frustration at the temperature from where the system is

cooled down to access the low temperature state.

To conclude, we have shown that the electrical transport

in a strongly phase separated manganite thin film is

extremely sensitive to the relative fraction of the coexisting

FMM and AFM/COI phases and has inherent non-ergodicity.

The phase separation tendency is weakened when the frac-

tion of AFM/COI phase is reduced. The supercooling

insulator-metal transition is non-unique and depends on the

relative fractions of the FMM and AFM phases at the start of

the magneto-thermodynamic process. In contrast, the super-

heating transition has equilibrium characteristic and remains

independent of the ratio of the two ordered phases.
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