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Abstract: We present an experimental study showing the effect of the 

change in the bandwidth of light on the magnitude of both the complex 

degree of coherence and the spectral degree of coherence at a pair of points 

in the cross-section of a beam. A variable bandwidth source with a Young’s 

interferometer is utilized to produce the interference fringes. We also report 

for the first time that if the field is quasi-monochromatic or sufficiently 

narrowband, the elements of both the beam coherence polarization matrix 

and the cross-spectral density matrix, normalized to intensities (spectral 

densities) at the two points possess identical values. 
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1. Introduction 

Partial coherence properties of the scalar optical fields, both in the space–time and in the 

space-frequency domain have continuously been a subject of great interest in the last century. 

The degree of coherence of optical fields, both in the space-time [1, 2] and in the space-

frequency domain [3–6] have proved to be a strong tool for characterizing various correlation 

properties of optical sources. Later, several theoretical studies [7–9] and more recently, some 

experimental studies [10, 11] showed that the spectral degree of coherence is a natural 

property of optical fields that remains unchanged in the process of filtering. Moreover, it was 

also predicted that the magnitude of the complex degree of coherence does not approach to 

unity when the frequency pass-band of light is decreased. For the central fringe, the quantity 

attains its maximum value, which is equal to the absolute value of the spectral degree of 

coherence of the light [7, 8]. The space-time and the space-frequency treatments of coherence 

functions have found numerous applications in various fields [6, 12]. It was shown 

theoretically not long ago that if the field is strictly monochromatic or sufficiently 

narrowband, then both these characterizations yield identical results [13]. 

Recently, we have given an experimental method to construct a variable band-width 

source using a variable slit monochromator [11]. Using the secondary source, it was shown 

that the spectral degree of coherence remains unchanged on filtering the light. However, this 

experimental study is incomplete unless the dependence of the complex degree of coherence 

on change in the spectral-width of light and its relation with the spectral degree of coherence 

is made clear. Therefore, a vivid observation of these effects is essential. Also in recent years, 

the coherence properties of the electromagnetic beams have been associated with their 

polarization properties. For vectorial fields, matrices characterizing the coherence and the 

polarization properties simultaneously are called the beam coherence polarization (BCP) 

matrix [14–16] and the cross-spectral density (CSD) matrix [17–20] in the space-time and in 

the space-frequency domain, respectively. Using these matrices, several studies on various 

propagation dependent properties have been made in the last decade [21–34]. Though these 
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matrices have been proposed nearly one decade back yet the equivalence condition for the 

elements of these matrices has not been studied till now. Therefore, in this respect, it would 

be timely and interesting to investigate the usefulness of the scalar field based results for the 

vectorial (electromagnetic) fields, and find the condition for which the BCP and the CSD 

matrices could have identical elements. 

The main objective of this paper is to study relationship between the degrees of coherence 

in space-time and in space-frequency domain, experimentally. Instead of using separate filters 

having altered bandwidth (as in case of [10]), which might have slight dissimilarity in 

construction (in practice), we have used a single source which can be manipulated to produce 

light fields of desired bandwidths. Moreover, narrowband (interference) filters are very much 

susceptible to alignment, which will not be a case with present study. We have constructed a 

variable bandwidth source (secondary) using a variable slit monochromator and a continuous 

spectrum lamp [11]. Using a double-slit, interference fringes were obtained at the observation 

plane and their visibility was determined for different bandwidths of the impinging light. It 

was observed that the time domain visibility increases with the decrease in the bandwidth and 

approaches to the maximum value limited by the spectral visibility of the light. We also show 

that the results obtained using the scalar treatments in section 4 of this paper, have importance 

in connection with the recently formulated polarization and coherence theories. The 

experimentally verified relation between the degrees of coherence is used to find the 

condition of equivalence for the normalized elements of the BCP and the CSD matrices. 

Using the same experimental setup, it is shown that in the quasi-monochromatic limit, the 

normalized elements of the two matrices possess identical values. 

2. Relation between the complex degrees of coherence 

In space-frequency treatment of the partially coherent light, the spectral degree of coherence 

is described mathematically as [6] 
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where ( )1 2
, ,W ωr r  is the cross-spectral density of light and ( ), ,

i i
W ωr r  (for 1, 2i = ) are the 

spectral densities at the two points. Similarly, the complex degree of coherence that contains 

correlation information at a pair of points in space-time domain is given by [2] 
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where ( )1 2
, ,τΓ r r  represents the mutual coherence function, τ is the time difference and 

( ), ,0
i i

Γ r r  (for 1, 2i = ) are the intensities at the respective points in the source plane. 

As shown in [8], a relation could be established between the two degrees of coherence 

which is given by 
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where the normalized spectra of the field at the two points are given by 
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In Eq. (4) quantity ( ) ( )i i i
, , ,S ω W ω=r r r is the spectral density of light at point 

i
r  [see  

Eq. (1)]. As a special case, if ( ) ( ) ( )1 2
, , ,s s sω ω ω= =r r r, and the light is quasi-

monochromatic, i.e. its effective frequency range is much smaller than the mean frequency 

(
0

ω ω∆ << ), then the spectral degree of coherence ( )1 2
, ,µ ωr r does not depend on ω  over the 

bandwidth ω∆ of light. In these conditions, taking 0τ = readily gives [8], 

 ( ) ( )1 2 1 2
, ,0 , , , γ µ ω=r r r r  (5) 

i.e. the equal time complex degree of coherence is equal to the spectral degree of coherence of 

light. The directly measurable quantity in this respect is the absolute value of the degree of 

coherence (or the visibility of the interference fringes). Taking modulus on both sides of  

Eq. (5), we get 

 ( ) ( )1 2 1 2, ,0 , , . γ µ ω=r r r r  (6) 

It is worth to emphasize here that the condition imposed to arrive on Eq. (5) is that the 

effective frequency range should be smaller than the central frequency of light. One way to 

obtain this condition experimentally is to put identical filters having sufficiently narrow pass-

band in front of both the slits in the Young’s interference experiment [7, 10]. Another way to 

achieve this feat may be to use a variable bandwidth source, and such a secondary source was 

constructed using a variable slit monochromator as reported in [11]. 

 

Fig. 1. Schematics of the experimental setup. S Tungsten halogen lamp, D diffuser, M 

monochromator with microprocessor (MP) control (1, 2 are the entrance and exit slits of the 

monochromator, respectively), SS single slit, P polarizer, DS double slit, H half wave plate, R 

observation plane, PD photodiode, DMM digital multimeter, F fiber, SM spectrometer and DP 

data processor. 

3. Experimental setup 

A tungsten-halogen lamp S (Mazda, colour temperature = 3200 K) with diffused outer glass 

jacket was operated at 500 W using a regulated dc power supply (Heinzinger, stability 1 part 

of 10
4
) as shown in Fig. 1. The light coming out of the uniformly illuminating, polychromatic, 

continuous spectrum source was passed through a microprocessor (MP) controlled 

monochromator M (CVI, Digikrom) having variable entrance and exit slits. As shown in  

Fig. 1, a single-slit SS (slit width 0.4 mm) was placed at a distance 40 cm from the exit slit of 

the monochromator to control the coherence developed at the double-slit plane [11]. The 

beam emerging from SS illuminated a double-slit DS having rectangular slits with slit width 

0.15 mm and slit separation 0.25 mm and was placed 70 cm away from SS. The beams 

emerging from the double-slit interfered and the fringes were obtained at a distance of 30 cm 

from DS (see Fig. 2). The time-domain measurements were made using a silicon 

photodetector PD (Perkin Elmer, sensing area 120 µm
2
) interfaced with a digital multimeter 

DMM (Keithley, 2000 model). The spectral measurements were carried out using a fibre (F) 
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coupled spectrometer SM (Photon Control, SPM002, spectral bandwidth≈0.5 nm) interfaced 

with a personal computer DP (see Fig. 1). 

4. Results and discussion 

In this experimental study, the central wavelength of the broadband, variable bandwidth, 

secondary source was chosen 670 nm because of maximum detection sensitivity of the 

photodetector at this wavelength. Using the microprocessor control, the bandwidth of the 

emerging light was changed from 4.6 nm to 0.6 nm, as shown in our previous work (see  

Fig. 2 in [11]). The interference fringes obtained for various bandwidths of light are shown in 

Fig. 2. In our case, the effective bandwidth of the light ω∆  was much smaller than the peak 

frequency ω of light (3×10
12

 Hz << 4.8×10
14

 Hz) and therefore, the spectral degree of 

coherence ( )1 2
, ,µ ωr r  for the pair of points could be assumed to be substantially constant 

over the effective bandwidth of light. 

 

Fig. 2. Photograph of the interference fringes obtained at plane R. The entrance and the exit 

slits of the monochromator were opened for (a) 2, (b) 1.6, (c) 1.2, (d) 0.8, (e) 0.4 and (f) 0.1 

mm. 

The spectral visibility could be determined by taking intensity (spectral) measurements 

horizontally across the fringe pattern and using the relation [6] 

 ( ) max min

1 2

max min

( ) ( )
, , ,

( ) ( )

S S

S S
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µ ω

ω ω
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where 
max

( )S ωr, and 
min

( )S ωr, are respectively the maximum and the minimum values of 

spectral density around the observation point r in the central fringe. Similarly, the visibility of 

fringes ( )1 2, ,0γ r r could be determined using Eq. (7), replacing spectral density S by 

intensity I  [2, 6]. The magnitude of the spectral degree of coherence ( )1 2, ,µ ωr r was 

measured for different values of the bandwidth and is shown in Fig. 3(a). The graph shows 

that within experimental uncertainty, this quantity remains constant throughout the bandwidth 

range. Thus the absolute value of the spectral degree of coherence remains unaffected by the 

change in the bandwidth of light [11]. 

Figure 3(b) shows the behaviour of the magnitude of the complex degree of coherence 

with change in the bandwidth of light. The fringe visibilities of the central (upper curve) and 

the off central fringes, i.e. either the side of the central fringe (lower curve) decrease for 

higher bandwidths. It also shows that, for smaller frequency passband, the visibility (time-
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domain) approaches to the spectral visibility of light, which is its maximum (limiting) value 

(see Fig. 3). This infers that the maximum visibility of the interference fringes formed by the 

filtered light will not, in general, tend to unity as the pass-bands of the filters decrease [7, 8]. 

A careful look on the interference patterns in Fig. 2 also reveals that the visibility of the 

central fringe is more than that of the off central fringes. However, the change in visibility 

from (a) to (f) in Fig. 2 could not be judged so accurately by naked human eye due to the 

decrease in overall intensity (throughput) of light with decrease in bandwidth. 

 

Fig. 3. (a) Behaviour of the magnitude of the spectral degree of coherence (spectral visibility) 

with the change in the bandwidth of the light. (b) The change in the absolute value of the 

degree of coherence (visibility) with bandwidth of light, measured for the central fringe 

(shown by dots) and for either side of the central fringe (shown by triangles). The dotted line in 

(a) and (b) shows the trend line plotted as linear fit. The error bars show the uncertainty in the 

measurements calculated at 95% confidence interval. 

5. Application for the elements of BCP and CSD matrices 

The elements of the BCP matrix can be determined using the relation [15, 16] 

 ( ) ( ) ( ) ( )1 2 1 2 1 2, , , , , , ,ij i j ijJ I I γ=r r r r r rz z z z  (8) 

where ( )1 2
, ,  for ;

ij
i x, y j x, yγ = =r r z are the values of the complex degrees of coherence 

(equal time degree of coherence, 0τ = ) and ( ) ( )1 2
, , ,

i j
I Ir rz z  are the field intensities for 

different polarized components of the beam [14]. For the sake of convenience, we omit the 

term z (direction of propagation) and use 0τ = in the equation. Thus we can write Eq. (8) as 
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A similar equation could be written for the elements of the CSD matrix as [18, 20] 
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where ( )1 2
, ,

ij
ωµ r r for ;i x, y j x, y= = are the elements of spectral degrees of coherence for 

different polarized components of the light beam [34]. 

It has been predicted by Riklin and Devidson [13] that, if the field is strictly 

monochromatic or sufficiently narrowband, so that 

 
2 1 1

,
c ν

−
<<

∆

ρ ρ
 (11) 
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then both the space-time and the space-frequency treatments will produce identical results. In 

Eq. (11) ρ1 and ρ2 are the radial vectors in the double-slit (DS) plane (see Fig. 8 in [13]). 

Accordingly, 
2 1
−ρ ρ corresponds to the double slit size. Using Eqs. (9) and (10) with Eq. (5), 

we have 

 
( )
( ) ( )

( )
( ) ( )

( ) ( )1 2 1 2

1 2 1 2

, ,0 , ,
, for ,  ;

, ,

ij ij

i j i j

J W ω
i j x, y

I I S ω S ω

= =
r r r r

r r r r
 (12) 

i.e, the elements of the BCP matrix, normalized to intensities at the two points are identical to 

the elements of the CSD matrix, normalized to the spectral densities. 

We investigate experimentally Eq. (12) for different polarizations of light. For 

xx diagonal element, thin rectangular sheet polarizers P1 and P2 (see Fig. 1), cut in 

x directions were put separately before slits at DS passing the x components of the optical 

field only (similar to [35]). This produced the interference pattern for x polarized light. 

Quantities ( )1 2, ,0xxγ r r  and ( )1 2, ,xxµ ωr r  were measured for the central fringe with the 

help of Eq. (7) and their values were found nearly the same (≈0.21). For diagonal 

yy element, P1 and P2 were rotated by right angle (90°) producing the interference fringes for 

y polarized light. The magnitudes of the degrees of coherence ( )1 2, ,0yyγ r r  and 

( )1 2, ,yyµ ωr r  were also determined in the similar manner. These quantities were having 

nearly the same visibility (≈0.21) within experimental uncertainty. This showed that the 

normalized diagonal elements of both the BCP and the CSD matrices were having identical 

values within the quasi-monochromatic limit imposed by Eq. (11). 

To determine the off-diagonal elements of these matrices, visibility measurement were 

performed by rotating one of the sheet polarizers (say P2) by 90° (see Fig. 1). It allowed 

x and y electric field components of the beam to pass through different slits. As 

orthogonally polarized light beams do not interfere (called Fresnel and Arago laws [35]), we 

introduced a thin rectangular half wave plate H having optic axis at an angle 45° with the 

incident polarization of the beam, just after one of the slits in DS (see Fig. 1). This rotated the 

incident polarization of the beam by 90°, making both the beams (after the slits) with same 

planes of polarizations, enabling them to interfere. However, no interference fringes were 

produced for this ( xy ) polarization. The reason was that approximately no correlation was 

present in between the orthogonal electric field components of the unpolarized light beam. So 

the visibility of the interference fringes in space-time ( ( )1 2, ,0xyγ r r ) and in space-frequency 

domain ( ( )1 2, ,xyµ ωr r ) measured using SP and PD (see Fig. 1) were found approximately 

zero. By interchanging the sheet polarizers and repeating the experiment, same results (no 

fringes) were obtained for yx polarization of the light. Quantities ( )1 2, ,0yxγ r r  and 

( )1 2, ,yxµ ωr r were again measured having nearly 0% visibility. This infers the identical 

nature of the normalized off-diagonal elements of both the BCP and the CSD matrices, within 

the quasi-monochromatic limit [Eq. (11)]. These results obtained for the diagonal and the off-

diagonal elements justify our claim which has been made about the equivalence of the 

elements of the BCP and CSD matrices, for a filtered thermal (unpolarized) beam of light [see 

Eqs. (11) and (12)]. 

It is worthwhile to mention here that in this experiment the double-slit (DS) size 

2 1
 −ρ ρ was 400 µm, which required FWHM 1.3 nm< , satisfying Eq. (11). The above 

mentioned measurements were performed for light bandwidth around 0.9 nm. In strict terms, 
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for lower frequency spread of the source, the matching in the space-time and the space-

frequency visibilities are better, and the inverse. Though we have measured the absolute 

values of the degrees of coherence only, yet the phase information can also be acquired using 

the methods well known in literature [18, 19]. So as long as Eq. (11) holds, either of the two 

treatments (space-time or space-frequency) could be used to characterize the polarization and 

the coherence properties simultaneously, at a pair of points in the cross-section of a random 

electromagnetic beam. 

6. Conclusion 

In summary, the relationship between the space-time and the space-frequency degrees of 

coherence is studied experimentally using a variable bandwidth source in Young’s double-slit 

interference experiment. We found that by decreasing the bandwidth of light, the absolute 

value of the complex degree of coherence for a pair of points increases but doesn’t approach 

to unity. The maximum value of this quantity determined at the central fringe is limited by its 

spectral visibility that remains unchanged in the process of filtering of light. However, the 

visibility of the off central fringes remains less than that for the central fringe. Another 

important result of this paper is the equivalence condition for the normalized elements of the 

BCP and the CSD matrices. We have shown that for a quasi-monochromatic (or sufficiently 

narrowband) electromagnetic beam, the normalized elements of the BCP and the CSD 

matrices own identical values. These findings might be applicable for the free-space 

communication studies and could pave the way for further research in the field of coherence 

and polarization. 
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