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A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based

chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection

in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA

probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine,

using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V)
characteristic curve and scanning electron microscopy. The sensing performance of the sensor was

studied with respect to changes in conductance in SWNT channel based on hybridization of the target

S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe.

The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA,

confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear

response to S. pyogenes G-DNA from 1 to1000 ng ml�1 with a limit of detection of 0.16 ng ml�1.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4902447]

Bacterial Streptococcus pyogenes (S. pyogenes) infec-

tion in human throat causes initially pharyngitis and if it is

not treated, it may cause damage of human heart valves and

finally leads to rheumatic heart disease (RHD).1–3 RHD is a

worldwide problem and it is more common in Asian devel-

oping countries due to poor health facilities.4–6 The usual

detection methods of RHD infection are culture test,7 bio-

chemical test7,8 impedimetric immunosensor,9 multiplex

PCR and genetic markers,10–12 illumigene kit assay13 and

fluorescent in situ hybridization (FISH).14 All the above

methods are time taking, less sensitive and specific, costly

and non-confirmatory based on a single test. Even, PCR and

marker based diagnosis take more time for confirmation of

the infection of S. pyogenes.11,12 Therefore, there is a possi-

bility of having an improved method of using a genosensor

for an early detection of rheumatic heart disease.15

Nowadays, nanobiosensors are more demanding for rapid di-

agnosis of the disease because of portable, disposable, and a

non-expensive label free detection technique with high sensi-

tivity and specificity. Recently, the above features have been

found in one-dimensional (1D) nanostructures (nanowires,

nanotubes, and nanobelt) based chemiresistive/field effect

transistors (FET) nanobiosensors due to their high sensitiv-

ity, ease of miniaturization, and low power requirement.

Among these 1D nanostructures, single-walled carbon nano-

tubes (SWNTs) are extensively used as transducer due to

their excellent electrical, chemical, and mechanical proper-

ties,16–18 for the development of label free nanosensors. The

conductance of the SWNT chemiresistive/FET devices is

highly sensitive to surface adsorption of biomolecules and is

a function of analyte charge.19 Therefore, SWNT based

chemiresistive genosensor may be an effective tool for an

early detection of rheumatic heart disease.

S. pyogenes can be detected using mga (multiple gene

activator) gene based specific probe, on SWNT chemiresis-

tive device, which does not show homology with other

pathogens or human DNA collected from patient throat swab

samples. mga gene is the key regulator of virulence and con-

served in Group A Streptococcus (GAS).20 mga, a 62kD

DNA binding protein with 500 amino acids,21 is a multiple

gene regulator which activates the transcription of several

genes such as antiphagocytic M protein (emm), C5a pepti-

dase (scpA), M-like proteins, and serum opacity factor

(sof).22 Although, mga has various orthologs, it is conserved

in S. pyogenes and hence can be used for the detection of S.
pyogenes infection causing RHD in human.

Herein, we report the biofunctionalization of SWNT

with a 24 mer mga capture probe through carboxyl

(50COOH) to active amino group of an organic molecular

bilinker, 1-pyrenemethylamine, on SWNT surface and its

subsequent hybridization with the target S. pyogenes ssG-

DNA. A detail interaction of S. pyogenes ssG-DNA on

SWNT upon hybridization was delineated using a nanoscale

electronic chemiresistor device with SWNT acting as a

semi-conducting channel.

Brain heart infusion broth was purchased from Himedia.

Tris saturated phenol was obtained from Qiagen, Germany.

50carboxyl modified 24 mer capture mga gene ssDNA probe

(50 HOOC-GCACAGCCAAT TTCTAGCTTGTCG 30) was

chemically synthesized from Bio India Life Sciences, India.

The SWNTs (SWNT-COOH, 80%–90% purity; bundle di-

ameter: 4–5 nm) were purchased from Carbon Solution, Inc.

(Riverside, CA).
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1-Ethyl-3-(dimethylaminopropyl) carbodiimide (EDC), N-
Hydroxysuccinimide (NHS) Tris(hydroxymethyl)aminomethane

(Tris), ethylenediaminetetraacetic acid (EDTA), N, N0

dimethyl formamide (DMF), 6-mercaptohexanol (MCH),

1-pyrenemethylamine (PMA), and other chemicals were

used without further purification. RHD patient swab samples

were collected from Maulana Azad Medical College, Delhi,

India. Bacterial culture and genomic DNA isolation were

carried out by standard protocol, at National Centre for

Disease Control (NCDC), Delhi, India.

The genomic DNA (G-DNA) isolation was carried out

from 18 h cultured S. pyogenes from brain heart infusion

broth at NCDC, Delhi using phenol chloroform method.23

The purity (A260/280) and quantity (A260) of the DNA was

measured using nanodrop spectrophotometer.

The G-DNA was also isolated from throat swab of RHD

patients by dissolving in 100 ll STE (50 mM Tris, 50 mM

EDTA, 20% Sucrose) buffer, pH 8 and heating at 95 �C for

5 min (bacterial cell lysis). After cell lysis, it was centrifuged

at 5000� g for 5 min and supernatant (containing G-DNA)

was taken for quantification by nanodrop spectrophotometer.

The isolated DNA (dsDNA) after denaturation at 95 �C for

5 min (ssDNA) was directly used for hybridization with im-

mobilized ssDNA probe at SWNT.

The SWNTs (0.01 mg ml�1) were ultrasonically dis-

persed in N, N0 dimethyl formamide (DMF) by centrifuga-

tion at 31 000� g for 90 min. The dispersed SWNTs were

aligned across a pair of the 3 lm apart micro fabricated

gold electrodes by ac-dielectrophoresis at applied frequency

of 5 MHz (1.5 V peak-to-peak amplitude). The aligned

SWNTs were then annealed at 300 �C for 1 h in a reducing

environment (5% H2 in N2 gas). The device was incubated

with 6 mM 6-mercapto-1-hexanol (MCH) in DMF for 1 h to

passivate the gold surface (source and drain) in order to

block the non-specific binding sites. The aligned SWNTs

were incubated with 6 mM 1-pyrenemethylamine (PMA) for

2 h, at room temperature and were washed with DMF and

dried under N2 gas flow. The single stranded mga gene

(50 carboxyl-GCACAGCCAATTTCTAGCTTGTCG 30) probe

was covalently immobilized on SWNT by incubating it

(10 lM in TE buffer; pH 8.0) with SWNT-chip for 20 h at

37 �C. The chip was repeatedly washed with TE buffer to

remove unbound probe and dried under N2 gas flow. The de-

vice (SWNT-chip) was further treated with 0.1% bovine se-

rum albumin (BSA) to block the non-specific binding sites of

both unreacted free NH2 sites of the crosslinker PMA as well

as unexposed sites of SWNT, followed by washing with dis-

tilled water and dried under N2 gas flow to obtain the desired

chemiresistive genosensor. The fabrication of chemiresistive

genosensor is schematically represented in Fig. 1.

The sensor (device) characterization and sensing perform-

ance were carried out by monitoring the current-voltage (I-V)

characteristics between þ0.5 and �0.5 V (PGSTAT302N,

AUTOLAB instrument from Eco Chemie, The Netherlands)

and taking the inverse of the slope of the I-V curve (resistance

of the device). The SWNT-device was connected to a

Micromanipulator model 450 PM-B probes station that makes

electrical contact to the source and drain electrodes of the de-

vice. The I-V measurements were taken after each step of de-

vice fabrication from SWNT alignment to mga ssDNA probe

immobilization as shown in Fig. 2(a). The surface characteri-

zation of SWNT device, using scanning electron microscope,

also confirms the alignment of SWNT between the pair of

gold microelectrodes [inset of Fig. 2(a)]. Pristine SWNT-

device shows a p-type behavior [Fig. 2(b)] due to exposure of

SWNTs to oxygen (O2þ 2e�¼ 2O�) in a typically gate volt-

age dependence field effect transistor study with a back gate

voltage, Vg, in the range of �40 to þ40 V, at a drain voltage

(Vd) 0.1 V recorded on a Keithley semiconductor characteriza-

tion system 2420. The current in the SWNT device, at given

voltage decreased after passivation of the gold surface with

non-specific blocking reagent MCH, which may be attributed

to the formation of self assembled monolayer (SAM) of MCH

on the gold surface. Earlier, the formation of MCH at gold

surface upon overnight exposure showed increased current in

FIG. 2. (a) Current-Voltage (I-V) char-

acteristics curve of the device at vari-

ous stages of device fabrication; Inset

shows the micro-chip structure with a

SEM image of ssDNA probe-SWNT/

Au at 60.00 KX magnification; (b)

field effect transistor (FET) character-

istics curve for the pristine SWNT/Au

device.

FIG. 1. Schematic representation for fabrication of SWNT genosensor for

detection of RHD.
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SWNT due to energy level alignment effect between the Au

contact and SWNT24,25 that shifts the gold Fermi level

towards the valence bond of SWNT and therefore, decreases

the carrier injection barrier. However, a reverse trend of

decreased current in SWNT observed in our case may be due

to the short incubation time (1 h) of thiol that did not give

enough time for thiol to diffuse into the SWNT gold interfa-

ces.26 The current in SWNT device further decreased

(increased resistance) upon functionalization with a molecular

biolinker, PMA, due to electron transfer to SWNT, confirming

the attachment of PMA through p-p stacking interaction

between the SWNT and pyrene groups. A further decrease in

current was observed in SWNT after covalent biomolecular

immobilization with mga ssDNA gene probe. This change in

conductance is in accordance with the literature27 and is attrib-

uted to the reduction in charge carriers (holes) in p-type

SWNT semiconductor (increased resistance) due to accumula-

tion of negative charge and/or scattering potential as a result

of covalent attachment of ssDNA probe, thereby confirming

the biofunctionalization of SWNT leading to the formation of

the DNA sensor.

Sensing performance of the nanodevice was investigated

for genomic DNA (G-DNA) isolated from S. pyogenes in TE

buffer, pH 8 and denatured at 95 �C for 5 min to make single

stranded genomic DNA (ss G-DNA) for hybridization with

complementary single stranded DNA (ssDNA) probe on

SWNT. 2 ll sample of different concentrations of the target

ssG-DNA in TE buffer was dispensed on the SWNT-device

and washed off with TE buffer, pH 8, after 2 min incubation,

and I-V characteristic curve was recorded from �0.5 V to

þ0.5 V, under dry condition. Fig. 3 shows a decreasing trend

in current in SWNT (increase in resistance) on successive

incubation with an increasing concentration of ss-GDNA,

confirming the sensing modality of the nanostructure chemir-

esistive genosensor for a small change in charge and/or size

molecule upon hybridization. Fig. 4 shows the concentration

dependent calibration plot for ssG-DNA with a relationship

between the device normalized response [(R�R0))/R0,

where R0 and R are the resistance of the device before (con-

trol) and after incubation with ssG-DNA] and ssG-DNA con-

centrations. The resistance was calculated as the inverse of

the slope of the I-V curve between �0.5 and þ0.5 V (linear

range). The device exhibited a linear normalized response

(normalized resistance change in percentage) to complemen-

tary ssG-DNA from 1 to 1000 ng ml�1 concentration with

sensitivity (slope of the calibration curve) of �66%. The

error bars (which correspond to the change of resistance

measured for 3 replicates) showed the variability of �6.7%

in sensitivity over the concentration range of 1–1000 ng ml�1

ssG-DNA. The lowest detection limit (LOD) of the device

was calculated from a formula 3r/m, where r is the standard

deviation of control sample response and m is the slope of

the calibration curve and was found to be 0.16 ng ml�1 ssG-

DNA. This LOD of the SWNT-device is quite lower than

FIG. 3. The current-voltage (I–V) characteristics of the device plotted

between 0.5 and �0.5 V for different concentrations (1–1000 ng ml�1) of

hybridizing ssG-DNA with immobilized probe.

FIG. 4. Concentration dependence calibration curve of ssG-DNA probe-

SWNT/Au device for G-DNA of S. pyogenes. Each data point is an average

of the measurements from three individual devices and error bars represent

61 standard deviation; Inset: normalized DR/R0 (%) response of the device

for non-complementary (mismatch) G-DNA of S. aureus with respect to G-

DNA of S. pyogenes.

TABLE I. Comparative performance of different DNA based methods for detection of rheumatic heart disease (dsDNA: double stranded DNA, ssG-DNA: sin-

gle stranded genomic DNA).

S. No. Detection method Target Limit of detection (LOD) Detection time (min) Reference

1 speB genetic markers dsG-DNA 100 ng dsDNA 80–120 16

2 mga genetic marker dsG-DNA 100 ng dsDNA 80–120 17

3 mga genosensor ssG-DNA 2.33 ng ml�1ssDNA 30 27

4 Gold composite DNA sensor ssG-DNA 1.66 ng ml�1ssDNA 30 28

5 Chemiresistive genosensor ssG-DNA 0.16 ng ml�1ssDNA 5 Present

213701-3 Singh et al. Appl. Phys. Lett. 105, 213701 (2014)
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earlier reported methods27,28 for S. pyogenes detection caus-

ing RHD, as shown in Table I.

The specificity of the SWNT-chemiresistive genosensor

for ssG-DNA of S. pyogenes was investigated by incubating

with noncomplementary ssG-DNA isolated from Staphylococcus
aureus [inset of Fig. 3]. This experiment was conducted with

a 10 ng ml�1 ssG-DNA (non-complementary), and the device

response was compared to one obtained from a similar con-

centration of a complementary ssG-DNA of S. pyogenes
[inset of Fig. 4], under identical conditions. Negligible

current response was observed for the non-complementary

ssG-DNA with a contribution of about 8.1% to the total

response observed with respect to ssG-DNA of S. pyogenes
for the same concentration, indicating a good selectivity and

specificity of the sensor device. The performance of this de-

vice has been compared with different available methods

with respect to LOD and the detection time for the detection

of S. pyogenes causing RHD and is given in Table I.

In conclusion, a label free chemiresistive nanogenosen-

sor device based on SWNT was developed for ultrasensitive

early detection of mga gene of S. pyogenes causing RHD.

The gene specific 24 mer ssDNA probe was covalently im-

mobilized on SWNT for the construction of a chemiresistive

genosensor. The hybridization event with complementary

ssG-DNA of S. pyogenes was detected with a change in cur-

rent in SWNT, at a concentration range of 1–1000 ng ml�1

with a sensitivity of �66% per decade and LOD of

0.16 ng ml�1. The high sensitivity, specificity, and label free

technique makes this chemiresistive genosensor advanta-

geous over the previous methods for early detection of RHD

to prevent the damage of mitral and aortic heart valves.
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