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DuringDiwali festival, extensive burning of crackers and fireworks ismade.Weeklong intensive observational campaign for aerosol
study was carried out at a representative urban location in the eastern Indo-Gangetic Plain (IGP), Varanasi (25.3∘N, 83.0∘E),
from October 29 to November 04, 2005 (Diwali on November 01, 2005), to investigate behavioral change of aerosol properties
and radiative forcing between firework affected and nonaffected periods. Results show a substantial increase (∼27%) in aerosol
optical depth, aerosol absorption coefficients, and aerosol scattering coefficients during affected period as compared to non-affected
periods. Magnitudes of radiative forcing at top of atmosphere during affected and non-affected periods are found to be +10 ± 1 and
+12± 1Wm−2, respectively, which are −31± 7 and −17± 5Wm−2, respectively, at surface. It suggests an additional cooling of ∼20%
at top of atmosphere, ∼45% cooling at surface, and additional atmospheric heating of 0.23 Kday−1 during fireworks affected period,
which is ∼30% higher than the non-affected period average.

1. Introduction

Importance of aerosols in regional and global climate has
gained wide knowledge base during the last couple of
decades. General impact of these aerosols is to cool the atmo-
sphere and to compensate the atmospheric warming caused
due to enhanced greenhouse gases. However, atmospheric
warming due to aerosols is also noticed when absorbing
particles, such as black carbon (soot) and/or mineral dust,
are present [1, 2]. Significant heating to the atmosphere
may play a crucial role in various boundary layer processes
under favorable atmospheric conditions [3]. The presence of
such aerosols is higher in the atmospheric boundary layer
[4], but they are also reported in the free troposphere till
stratosphere. Boundary layer aerosols are characterized as
short-lived and showed spatiotemporal variation inmass and
number concentrations. Depending on weather condition

and location, the regional variability in physical, chemical,
and optical characteristics of aerosols is influenced bymixing
various types of aerosols, produced by different natural
and/or anthropogenic processes [3, 5], for example, aerosol
production from biomass burning [6], biogenic production
[7], industrial effluents [8], and so forth.The impact of aerosol
is also found to be associated with climatic elements [9].

During recent decades, there have been a number of
studies to characterize aerosols on local scale; however,
studies on instant increment of aerosols within 1-2 days,
due to fireworks, are available for only a few locations, for
example, during New Year event [10], Millennium festival
[11], Diwali festival [12–14], and so forth. Further, studies
reported for firework generated aerosols are more inclined
towards the impact of firework generated, gaseous as well
as particulate, pollutants on health [15, 16], air quality [12–
14, 16, 17], number and mass concentration [10, 11], and
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interrelationship between gaseous pollutants and particles
[10, 18], but the impact of fireworks generated aerosols on
climate in terms of atmospheric forcing has never been
assessed for any location so far.

The present study is an attempt to understand the changes
in optical characteristics of aerosols and also to understand
changes in radiative impacts that are caused due to mixing
firework generated aerosols in the ambience. Data for this
intensive observation period (IOP)was collected for an urban
location in Indo-Gangetic Plain (IGP), Varanasi (25.3N,
83.0E, 76 above mean sea level), during October 29 to
November 04, 2005 (Diwali was celebrated on November 01).
The objectives of the work are to broaden our understanding
towards the effect of fireworks on climate and also to quantify
their impact in terms of radiative forcing. To the best of
our knowledge, this is the first time to report the impact of
firework generated aerosol on radiative balance and heating
of the atmosphere.

2. Site Description, Weather, and Data

Varanasi is a representative urban station in the central
part of IGP. Varanasi is amongst few locations in India
for which the column ozone and solar ultraviolet radiation
are observed along with surface weather parameters, by the
office of India Meteorological Department (IMD) at BHU,
Varanasi, for the purpose of global database at World Ozone
and Ultraviolet Radiation Data Centre (WOUDC). Weather
parameters for the present study are obtained from surface
weather observatory beingmanaged by IMD, BHU, Varanasi.

Surface weather parameters and aerosol optical depths
(AODs) are collected at every half-to-one hour interval
during the entire campaign that includes the pre- and post-
Diwali period. Weather was mostly calm and stable during
the IOP. Mean sea level pressure during this period varied
from 1011 to 1016 hPa and wind was mostly calm. For the IOP,
daily maximum and daily minimum surface temperature and
relative humidity varied from29.0 to 31.0∘C, 11.1 to 19.0∘C, and
67% to 89%, respectively. General weather of Varanasi during
IOP is, however, shown in Figure 1.

Multiwavelength AODs have been collected using
MicroTOPS-II. The MicroTOPS-II used in this study
was compared with another set of MicroTOPS-II at the
National Physical Laboratory, New Delhi (NPL), before
IOP. MicroTOPS-II at NPL was calibrated at Solar Light
Company, USA, in 2004. More details for comparison,
however, can be found elsewhere [19]. AODs were measured
at 340, 500, and 870 nm wavelengths (full width at half
maximum: ±2–10 nm) and signals at 936 and 1020 nm are
used to compute columnar water vapor (CWV). As per
Morys et al. [20], pointing accuracy of the MicroTOPS-II is
better than 0.10 and long-term stability of the filter used in the
instrument is better than 0.1 nm per year. In order to check
the repeatability of the instrument, frequent observations
were taken at about 11 seconds interval on a fairly clear
forenoon of October 30, 2005. This series of observation
showed average and standard deviations of AODs at 340, 500,
and 870 nm as 1.213±0.013, 0.967±0.009, and 0.403±0.005,
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Figure 1: Weather parameters from October 28 till November 11,
2005 at Varanasi.

respectively, over ∼7 minutes of continuous measurements.
This suggests that the observations made during IOP are
consistent and can be considered as possessing good quality.

The spectral variations of AODs provide useful informa-
tion on columnar size distribution of aerosols, which can be
represented by Ångström power law [21] as,

𝜏

𝑎
(𝜆) = 𝛽𝜆

−𝛼

, (1)

where 𝜏
𝑎
(𝜆) is AOD at wavelength 𝜆 (in 𝜇m), 𝛽 is turbidity

coefficient, and 𝛼 is Ångström exponent (AE). 𝛼 is a good
indicator of size range of the dominant particle population
in an aerosol sample [22, 23], and turbidity coefficient (𝛽)
indicates total aerosol loading, which is equal to aerosol
optical depth (𝜏

𝑎
) at 1.0 𝜇m wavelength.

First order derivative of 𝛼 (i.e., 𝛼󸀠) is a derived param-
eter, which is calculated using more than two wavelengths.
This parameter is useful for the estimation of type of aerosols
[19]. In the present study, 𝛼󸀠 is computed using AODs
obtained at central wavelengths of 340, 500, and 870 nm.

3. Methodology

AODs, single scattering albedo (SSA), and asymmetric
parameter (AP) are crucial aerosol properties for the estima-
tion of aerosol direct radiative forcing (DRF). Since direct
measurements of SSA and AP were not available at Varanasi,
these parameters have been estimated using standard pro-
cedures (described in next section) of Optical Properties of
Aerosols and Clouds (OPAC) model [24].

3.1. Estimation of Aerosol Optical Parameters. OPAC model
provides wide range of optical and microphysical properties
of aerosols pertaining to 61 discrete wavelengths (between
0.3 and 40 𝜇m), eight values of RH, and various aerosol
compositions. We have followed an approach that uses the
available measurements as anchoring point in standard con-
tinental average aerosol model of OPAC, which is then fine-
tuned to match the measurement in order to derive optical
properties of aerosols (see [5] for details). As measured
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Figure 2: Comparison between measured and model (OPAC) derived spectral AODs for intensive observation period (IOP, October 29 to
November 04, 2005).

aerosol composition over the station was not available during
the study period, we have assumed possible composition in
the OPAC model. Once an appropriate atmosphere is gen-
erated in OPAC model, measured AODs from MicroTOPS-
II were used as a reference to constrain other crucial aerosol
optical parameters (i.e., SSA and AP). Comparison of OPAC
derived and measured spectral AODs are shown in Figure 2.
Modelled spectral AOD values were found to be lying within
standard deviations of measured spectral AODs, for all the
days during IOP. Difference between observed and modelled
values was found within 5%.

Using the above-mentioned approach, OPAC model is
run for each day of IOP. Though this is an alternative
method to derive crucial aerosol optical parameters in the

absence of observations, it is an established and widely used
method in the literature ([5] and references therein). In this
method, however, there are chances of uncertainties due
to vertical aerosol distribution. In the absence of vertical
aerosol profiles, as in the present case, the surface aerosol
properties are attributed to column properties, assuming
vertical profiles in OPAC model, as suggested by Srivastava
et al. [5]. Additionally, uncertainties may also be generated
due toOPAC accounted externalmixtures of different aerosol
components to form aerosol types. Being an urban station in
the central part of IGP, the probability of internal mixing or
coating of aerosols may be possible, which can deliver certain
uncertainties in the end result.
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3.2. Estimation of Aerosol Direct Radiative Forcing. Aerosols
are significant contributors to direct radiative forcing (DRF).
Some of these particles, for example, BC and mineral dust,
show absorbing nature [1, 2] and contribute significantly to
the warming of lower atmosphere due to short-wave absorp-
tion [25]. In the present study, net flux is computed in the
shortwave region (0.30–3.0 𝜇m), separately for top of atmo-
sphere (TOA) and surface, with and without aerosols, using
the Santa Barbara DISORT atmospheric radiative transfer
(SBDART) model [26]. The input parameters for SBDART
model are spectral AOD, SSA, and AP, which are either
measured or obtained by OPAC model. SBDART uses six
standard atmospheres to consider vertical profiles of atmo-
spheric parameters, such as average temperature, pressure,
water vapor, and ozone density [26]. Location ofVaranasi falls
in the tropical classification,which is characterized by average
water vapor of 4.117 g cm−2 and average columnar ozone of
253 DU. These data are close to observations over Varanasi
during October-November months. Surface albedo over the
station was considered to be 0.18, which is slightly less in
comparison to Kanpur (an industrial city situated ∼300 km
away from Varanasi) [27].

Diurnal average of aerosol direct radiative forcing (DRF)
at TOA and at surface is estimated by computing the
difference in net radiative fluxes, with and without aerosol,
respectively, at TOA and surface. The difference between
TOAand surface forcing is considered as atmospheric forcing
(Δ𝐹), which represents the amount of energy trapped or
absorbed by aerosols within the atmosphere and which is
available to be transformed into heat.

4. Results and Discussion

4.1. Aerosol Optical Characteristics. Figure 3 showsmeasured
AOD at 340, 500, and 870 nm wavelengths, along with the
Ångström exponents (𝛼), computed for the wavelength pair
of 340–870 nm and 𝛼󸀠 (computed with the help of wave-
length pairs 340–500 nm and 500–870 nm). By and large,
opposite behavior is observed between AOD and 𝛼 [12, 28,
29]. AOD was found to increase (with decreasing 𝛼) from
October 30 till November 01 (Diwali) and decrease (with
increasing 𝛼) on subsequent days (Table 1 and Figure 3).
Results suggest enhanced loading of aerosols during Diwali
period, most probably due to excessive burning of firework
and crackers [10–12, 30]. 𝛼󸀠 is a parameter that provides
information on types of aerosol in the aerosol population
[19]. Positive 𝛼󸀠 is an indicator of fine/accumulation-mode
particles dominance, whereas negative 𝛼󸀠 suggests domi-
nance of coarse-mode aerosol particles [19, 31–34]. Table 1
shows that 𝛼󸀠 is positive during IOP indicating persistent
dominance of fine-mode particles during all these days;
however, it was the lowest on Diwali. It suggests that IOP
is dominated by fine mode particle; but there is inclusion of
other fine mode particles due to burning of fireworks during
Diwali day. Babu and Moorthy [30] also found enhanced
AODs during the event of firework, which was caused due
to enhanced presence of black and organic carbon, generated
by burning of different types of crackers and fireworks during
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Figure 3: Day-to-day variability in AODs (340 nm, 500 nm, and
870 nm), AE (𝛼, 340–870 nm), and 𝛼󸀠 for IOP.

Diwali. Singh et al. [12] have reported enhancement of 5.7%
and 5.5% forAOD

340
andAOD

500
, respectively, duringDiwali

at Kanpur.
The variations in OPAC derived parameters, such as

absorption coefficients, scattering coefficient, and SSA at
500 nm (SSA

500
), are also shown in Table 1. In general, the

behavior of scattering coefficient was found similar to that
of absorption coefficient and AOD, but it was different to
that of AE. Scattering and absorption coefficients were found
to be maximum (461.6 and 24.2Mm−1, resp.) on Diwali.
The type of aerosols which contribute maximum to the
scattering coefficient may include water-soluble inorganic
species, such as sulfates and nitrates, arising from emissions
of SO

2
and NO

𝑥
, and contributions from fossil fuel and

biomass combustion sources. However, those aerosol types
that contribute maximum to the absorbing coefficient may
include BC, which is largely associated with firework [30].

Since scattering and absorbing type of aerosols are well
mixed in the real atmosphere, their ultimate effect in terms of
heating/cooling of the atmosphere depends on SSA of aerosol
population. For the present case, minimum value of SSA

500

(≈0.95)was observed onNovember 02, the next day ofDiwali.
It suggests extended influence of absorbing particles emitted
due to burning of fireworks during Diwali night [10, 11, 30],
which was affective till the next day. Absorbing aerosols are
found to be associated with lower SSA values [35].

Spectral variations of average AOD, absorption
coefficient, scattering coefficient, and SSA are shown in
Figures 4(a)–4(d), respectively, for affected (October 31,
November 01 and 02) and nonaffected (October 29, 30,
November 03 and 04) periods. Significant differences in
all the parameters were observed at all the wavelengths,
for affected and nonaffected periods. It is found that
AOD increased with the advent of Diwali and reached
to its maximum value on November 01 (Diwali) for each
wavelength (Figure 3).The burning of fireworks and crackers
invariably contributes to the anthropogenic aerosols [12, 14]
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Table 1: Daily mean values of AOD, column water vapor and AE, absorption coefficients, scattering coefficients, and SSA from October 29,
2005, to November 04, 2005.

Days (2005) Category AOD500 AE
340–870 CWV (cm) Abs. coeff.500 (Mm−1) Scatt. coeff.500 (Mm−1) SSA500

October 29 NA 1.06 1.26 1.63 15.58 320.20 0.954
October 30 NA 0.98 1.21 1.34 15.01 303.20 0.953
October 31 AF 1.31 1.18 1.39 20.80 406.20 0.951
November 01 AF 1.49 1.15 1.61 24.23 461.60 0.950
November 02 AF 1.17 1.16 1.58 18.70 351.10 0.950
November 03 NA 1.10 1.13 1.51 17.03 338.10 0.952
November 04 NA 0.72 1.14 1.45 14.08 218.10 0.954
NA: nonaffected, AF: affected.

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

AO
D

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Wavelength (𝜇m)

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Wavelength (𝜇m)

50

40

30

20

10

0

Ab
s. 

co
eff

. (
M

m
−
1
)

(b)

Affected
Nonaffected

600

500

400

300

200

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Wavelength (𝜇m)

Sc
at

t. 
co

eff
. (

M
m

−
1
)

(c)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Wavelength (𝜇m)

0.965

0.960

0.955

0.950

0.945

0.940

0.935

0.930

0.925

0.920

0.915

SS
A

Affected
Nonaffected

(d)

Figure 4: Spectral variation of (a) AOD, (b) absorption coefficient, (c) scattering coefficient, and (d) SSA for firework affected (October 31,
November 01 and 02, 2005) and nonaffected periods (October 29, 30, November 03 and 04, 2005).



6 Advances in Meteorology

50

40

30

20

10

0

−10

−20

−30

−40

−50

D
RF

 (W
m

−
2
)

TOA
Surface
Atmosphere

29
 O

ct

30
 O

ct

31
 O

ct

1 
N

ov

2 
N

ov

3 
N

ov

4 
N

ov
Days (2005)

(0
.5

7)

(0
.5

4)

(0
.7

7)

D
iw

al
i (

0.
90

)

(0
.6

8)

(0
.6

2)

(0
.4

6)

Figure 5: Day-to-day variability in the estimated direct radiative
forcing at the TOA, surface, and in the atmosphere.The heating rate
values are given in parentheses within respective bars.

and increases AODs [36]. AODs at all other wavelengths were
found to increase for firework affected period (Figure 3).
Average AOD

500
for affected period shows the value of 1.3,

which is ∼27% higher than the nonaffected period average.
Similar increment in absorption coefficient (21.2Mm−1,
increase of 27.4%) and scattering coefficient (406Mm−1,
increase of 27.4%) was also noticed for firework affected
period in comparison to nonaffected period. It is to be
mentioned here that, apart from the emissions of absorbing
aerosols, different water-soluble species (like sulfate, nitrate,
etc.) are also emitted from fire crackers burning, which are
of scattering in nature. As a result, an enhancement in both
absorption and scattering coefficients was observed. For the
same period, however, AE had decreased by 6.2%.

4.2. Aerosol Radiative Forcing and Implications to Atmospheric
Heating Rate. Broadband aerosol direct radiative forcing
(DRF) at the TOA, surface, and in the atmosphere for each
day during IOP is shown in Figure 5.Negative value of surface
forcing implies a net cooling effect, whereas positive value for
TOA and within atmospheric implies a net warming effect.
Significant day-to-day variability was observed in surface
and atmospheric forcing values.The surface and atmospheric
forcing was maximum (−38 and 47Wm−2, resp.) on Diwali
(November 01), whereas aerosol DRF at TOA was minimum
(9 Wm−2) on Diwali.

Average aerosol DRF estimated at TOA, surface, and in
the atmosphere, during affected and nonaffected period, is
shown in Figure 6. Magnitudes of forcing at TOA during the
affected and nonaffected periods were +10 ± 1 and +12 ±
1Wm−2, respectively; however, the forcing at surface was
−31 ± 7 and −17 ± 5Wm−2, respectively. These estimates
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indicated an additional cooling of 2Wm−2 at the TOA (∼20%)
and 14Wm−2 at the surface (∼45%) during firework affected
period. Results could be due to enhanced loading of aerosols
(absorbing and/or scattering type) over the station during
firework period. Apart from the aerosol loading of absorp-
tion/scattering type aerosols, TOA and surface forcing are
also sensitive to the albedo of the underlying surface [37].The
atmospheric forcing values during affected and nonaffected
periods were estimated to be +41 ± 6 and +29 ± 4Wm−2,
respectively, which translate to an additional atmospheric
warming of +12Wm−2 during firework affected period.

The higher value of surface cooling and strong atmo-
spheric heating in the atmosphere suggests their association
with various aerosol properties, for example, size range and
chemical composition of aerosol population, and raises sev-
eral climatic issues [4, 9, 38, 39]. An important aspect in this
regard is the aerosol-generated atmospheric heating rates,
which can be calculated from the first law of thermodynamics
and hydrostatic equilibrium as

𝜕𝑇

𝜕𝑡

=

𝑔

𝐶

𝑝

Δ𝐹

Δ𝑃

× 24 (hr/day) × 3600 (sec/hr) , (2)

where 𝜕𝑇/𝜕𝑡 is heating rate in kelvin per day (Kday−1), 𝑔/𝐶
𝑝

is lapse rate, 𝑔 is acceleration due to gravity,𝐶
𝑝
is specific heat

capacity of air at constant pressure (1006 Jkg−1K−1), Δ𝐹 is
atmospheric forcing due to aerosols, and Δ𝑃 is atmospheric
pressure difference, which was considered to be 300 hPa in
the present case.

The estimated atmospheric daily heating rates during the
study period are also shown in Figure 5 (in parenthesis).
Heating rates are found to be increased to higher magni-
tudes (0.90Kday−1) on Diwali, which decreased afterwards
to attain a lower magnitude (0.46Kday−1) on November
04. Average atmospheric heating rate was found to be



Advances in Meteorology 7

0.78 ± 0.11Kday−1 for the affected period, which is approx-
imately 30% higher than the nonaffected period (average
about 0.55 ± 0.07Kday−1). Considering the nonaffected
period to represent normal atmospheric conditions, atmo-
sphere is found to be heated up by 0.23 Kday−1 due to
enhanced aerosol loading related to burning of fireworks.

5. Conclusions

Increase of particulate number density is a common feature
during fireworks burning event. During Diwali festival, fire-
works are burnt in peak duration of 1-2 hours. An intensive
observation program was conducted from October 29 to
November 04, 2005 (Diwali on November 01.) at an urban
location in Indo-Gangetic Plain, Varanasi, India, to study
the optical properties of aerosols, radiative forcing, and
atmospheric heating rates caused due to Diwali fireworks.

Study shows enhancement of ∼27% in the values of
AOD
500

, absorption coefficients, and scattering coefficients
for firework affected period in comparison to nonaffected
period. Estimated top of atmosphere and surface forcingwere
found to be +10 ± 1 and –31 ± 7Wm−2, respectively, for
firework affected period and +12 ± 1 and –17 ± 5Wm−2,
respectively, for nonaffected periods. The estimated forcing
caused an additional cooling of ∼20% at top of atmosphere
and ∼45% at surface due to enhanced loading of aerosols
(absorbing and/or scattering type) over the station during
firework period.The resultant atmospheric forcing was +41±
6 and +29 ± 4Wm−2 during firework affected and non-
affected periods, respectively, which exerted an additional
atmospheric heating of∼0.23Kday−1 during firework affected
period. In view of increasing population and extensive use
of fireworks (and crackers) in major urban locations, the
routine measurements of aerosols will certainly be helpful
to understand the additional burden of aerosols caused due
to fireworks burning. Such observations are also useful for
understanding their impact on regional climate.
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