Attri, Pankaj and Bharti, Vishal and Kim, Young Sun and Gaur, Jitender and Chand, Suresh and Kwon, Gi-Chung and Lee, Seung-Hyun and Lee, Weontae and Choi, Eun Ha and Kim, In Tae (2014) Plasma modification of poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole) low bandgap polymer and its application in solar cells. Physical Chemistry Chemical Physics, 16 (48). 27043 -27052. ISSN 1463-9076

PDF - Published Version
Download (2591Kb) | Preview


For the first time, we here propose a green methodology to modify a low bandgap polymer for highly efficient solar cells using atmospheric pressure plasma jet or soft plasma operating on different feeding gases (air, Ar and N-2). The physical properties of the modified polymer were investigated using conductivity measurements, UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammograms, atomic force microscopy, cathodoluminescence and confocal Raman spectroscopy. Further, we examined the variation of the work function of the polymer before and after plasma treatment using a gamma-focused ion beam. Additionally, photovoltaic cells based on the plasma-modified polymer having ITO/PEDOT:PSS/PHVTT (with or without plasma modification): PC71BM/LiF/Al configuration were fabricated and then characterized. We found that the power conversion efficiency (PCE) of the plasma-modified polymer increased dramatically as compared to the control polymer (without plasma treatment). PCE of the control polymer was found to be 4.11%, while after air, Ar and N-2 gas plasma treatment the polymer showed PCEs of 4.85%, 4.87% and 5.14% respectively. Thus, plasma treatment not only alters the surface properties, but also modifies the bulk properties (changes in HOMO and LUMO bandgap level). Hence, this work provides new dimensions to explore more about plasma and polymer chemistry.

Item Type: Article
Subjects: Chemistry
Depositing User: Dr. Rajpal Walke
Date Deposited: 03 Nov 2015 05:48
Last Modified: 03 Nov 2015 05:48

Actions (login required)

View Item View Item