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Gold nanosphere enhanced green and red fluorescence in ZnO: Al, Eu31
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Gold nanoparticles can generate near field due to surface plasmon resonance (SPR) in the visible

region. Such near field has the ability to enhance fluorescence of optimally proximal emitters. We

have observed augmented green (intrinsic) and red (Eu3þ) emission under UV excitation

(375 nm) from an important semiconductor ZnO:Al, Eu3þ when optimally conjugated with gold

nanospheres. Local field generated by gold nanosphere (�30 nm) is simulated through finite

difference time domain method, and a direct correlation with fluorescence enhancement is

established. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4904014]

Zinc oxide, a direct band gap (�3.37 eV) multifunctional

semiconductor, is an excellent emitter in the UV-visible

region. Aluminum doped ZnO (AZO) shows good n-type

conductivity1,2 and offers low cost as compared to other trans-

parent conducting oxides.3 A luminescent AZO layer can be

very effective in light emitting devices as well as photovoltaic

applications. Doping AZO particles with light emitting lantha-

nide ions such as Eu3þ can make it an excellent fluorescence

emitter.4 Hence, by co doping Al and Eu3þ in ZnO host mate-

rial, both fluorescent and electrical properties of ZnO can be

enhanced. Though works have been reported on AZO5,6 and

Eu3þ doped ZnO7,8 separately, report on fluorescence studies

on Al and Eu3þ co doped ZnO is extremely rare.9

Photoluminescence (PL) quenching of Rhodamine 6G dye

due to fluorescence energy transfer to Au@ZnO core-shell

nanoparticles10 and enhancement and quenching of Eu3þ

emission from Eu(III)EDTA,3H2O complex, in presence of

Au@ZnO core-shell nanoparticles and Au nanoparticles,11

indicate how proximity of emitter with metal nanoparticle can

influence the recombination and energy transfer processes.

Optimal conjugation of metal nanoparticles (MNP) with fluo-

rescent particles is an effective way to augment fluorescence

yield. Recently, surface plasmon resonance (SPR)-mediated

tuning of emission property has been shown to be an effective

way to improve the band emission of ZnO nanostructures,12

localized Surface Plasmon Resonance (LSPR) enhanced

emission in Au-decorated ZnO nanorod arrays have also been

reported.13 But, plasmonic enhancement of both intrinsic and

rare earth emission in ZnO have been rarely explored, and we

report enhancement of both green (intrinsic) and red (Eu3þ)

emissions from Al and Eu3þ co doped ZnO due to proximity

with Au nanoparticles.

The excitation of LSPR in metal nanoparticles results in

the confinement of EM field in the nanoscale region very

close to the metal surface and a considerable enhancement in

the local density of optical states.14,15 When a fluorescent

nanoparticle is placed in proximity of such a metal nanopar-

ticle, emission can be greatly enhanced through two possible

mechanisms. One is the surface plasmon induced absorption

enhancement of emitters due to the enhancement of the local

electric field at the metal nanostructure interface, thus lead-

ing to fluorescence increment16 by excitation enhancement.

Another mechanism is the surface Plasmon coupled emission

(SPCE)17 which is achieved by coupling of emission ener-

gies with SP modes, or in simple words, spectral overlap of

plasmon absorption band of MNP with emission band result-

ing in emission enhancement. Such fluorescence enhance-

ment can be achieved by placing MNP’s in close proximity

to the phosphors particles; however, a thin dielectric spacer

layer is required to prevent the undesirable quenching

phenomenon18 since non radiative energy transfer may occur

when the fluorophore and MNP’s are in direct contact.

ZnO:Al, Eu3þ was synthesized by controlled solid state

diffusion process and showed hexagonal phase.30 Gold (Au)

nanoparticles were synthesized by colloid chemistry by opti-

mizing the method developed by Turkevish30 and TEM reveal

formation of Au nanospheres30 of average diameter 30 nm.

The studied Au NP�ZnO:Al,Eu3þ integrated material system

comprise of a thin film of ZnO:Al,Eu3þ particles and a layer

of Au nanospheres separated by a thin spacer layer of polyvi-

nyl alcohol (PVA) to avoid direct contact of both the

species.19 First ZnO:Al,Eu3þ particles were dispersed in a 3%

solution of PVA in distilled water and coated on a microscope

cover slip and dried. Over this layer, a pure PVA layer (3%)

was deposited followed by a layer of Au nanoparticle by drop

casting the colloidal solution of Au NPs. The graphical repre-

sentation of the integrated thin film is presented in Fig. 1(a),

the TEM images of Au NPs and ZnO:Al,Eu3þ particles are

shown in the inset. The integrated material system is studied

by confocal fluorescence imaging and spectroscopy. The sam-

ple was excited by 375 nm UV laser (10mW), matching the

band gap energy of ZnO so that the effect of enhanced EM

fields generated in the near field of Au nanospheres on the

intrinsic emission of ZnO as well as the signature emission

from the rare earth dopant Eu3þ can be investigated. The

confocal fluorescence spectra are shown in Fig. 1(b) for sam-

ples corresponding to the confocal fluorescence scans Figs.

1(c) and 1(d), respectively, of ZnO:Al,Eu3þ phosphor and

ZnO:Al:Eu3þ–Au NPs hybrid system. Integrated spectrum

taken for ZnO:Al,Eu3þ and ZnO:Al,Eu3þ–Au NPs hybrid sys-

tem reveal enhancement in fluorescence intensity in both
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green and red region with signature Eu3þ emission peak at

611 nm (5D0–7F2 electric dipole transition) becoming promi-

nent in the Au NP integrated sample. The enhancement is

133% for intrinsic green emission and 258% for Eu3þ red

emission. The confocal fluorescence images (Figs. 1(c) and

1(d)) clearly show regions of bright fluorescence as well as

considerable enhancement in the fluorescence intensity. To

further enumerate the effect of plasmonic near field of exact

Au nanospheres on fluorescence enhancement, we have done

three dimensional finite difference time domain simulations

(FDTD) to effectively calculate the EM field generated

around Au NP. For simulation of LSPR properties of gold

NPs, one representative Au NP image is taken from the TEM

micrographs on the basis of average distribution of synthe-

sized Au NPs. FDTD method has been widely used and is an

effectual method for simulation of MNP20–22 where solution

of Maxwell’s equations are obtained in both E (t) and H (t) by

making them discrete in time to generate the steady state con-

tinuous wave field E (x).

FDTD solutions (version 8.7.1)23 have been used with

mesh size 0.5 nm for spacing around the nanosphere taking

conformal variant 1 condition. The E-field intensities were

independent for the considered mesh size in x, y and z

directions. The optical dielectric function of gold is modeled

using the Johnson and Christy dispersion model.24,30 The

background refractive index was considered as 1.33 for

water. A cubic Yee cell was considered with perfectly

matched layer (PML) boundaries. Single particle absorption,

scattering and extinction spectra have also been simulated

using FDTD method (Fig. 2(b)), showing a dominant absorp-

tion peak at 511 nm. Since the size of Au NP is small,

absorption is predominant and scattering is negligible result-

ing in predominance of absorption in the extinction pro-

cess.25 Measured UV-Visible absorption spectra of Au NP

colloidal solution (shown in the inset) reveal broad dipolar

peak centered at 528 nm (Fig. 2(a)) due to inhomogeneous

damping caused by different spatial positions and random

orientations of Au NPs of varied shapes in colloidal solution.

Dipole LSPRs are excited efficiently by plane wave; they are

known as bright modes; and they are broad as they suffer

strong radiative damping. FDTD method was employed to

calculate the generated EM field for the Au nanosphere at

excitation wavelength 375 nm (Fig. 3(a)), LSPR frequency

528 nm (Fig. 3(b)), and emission wavelengths 505 nm (Fig.

3(c)) and 611 nm (Fig. 3(d)).

The simulated images clearly show strong dipolar field

leading to significant localization of electric field in the near-

field region. The calculated local electric field values reveal

largest jEj2 value at the dipolar LSPR frequency. At 375 nm

excitation wavelength, the calculated jEj2 value for the Au

nanosphere is 16 times, and at LSPR, it is 29 times that of

the incident field. The jEj2 values indicate smaller field

enhancement at emission wavelengths, e.g., 505 nm (intrinsic

green emission from ZnO) and 611 nm (corresponding to red

emission from Eu3þ) as can be easily discerned from FDTD

simulated images (Figs. 3(c) and 3(d)).

Fluorescence enhancement due to LSPR of Au NPs can

occur due to two factors mainly confinement and concentra-

tion of EM field into sub wavelength region (evaluated at the

excitation frequency) and the increase in quantum yield

which is connected to the modification of photonic density of

states26 (evaluated at the emission frequency) in the vicinity

of the phosphor particle. However, the contributions of

these two components cannot be distinguished very effi-

ciently, particularly when broad LSPR band of Au NPs (Fig.

2(a)) overlap with both excitation and emission spectrum of

the ZnO:Al,Eu3þ particles. Of the two mechanisms through

which metal enhanced fluorescence (MEF) can occur, excita-

tion enhancement (enhancement of local EM Field) produces

a higher excitation rate but does not change the decay time of

FIG. 1. (a) Graphical representation of arrangements of ZnO:Al,Eu NPs (sea

green layer), PVA layer (transparent layer), and Au NPs (golden spheres)

used for confocal fluorescence study, inset shows the TEM image of Au NPs

and SEM image of ZnO:Al,Eu particles; (b) confocal fluorescence spectra

(integrated) under 375 nm laser excitation; confocal fluorescence image of

(c) ZnO:Al,Eu and (d) ZnO:Al,EuþAu NP.

FIG. 2. (a) Measured UV-Visible

absorption spectra of Au NP colloidal

solution. The inset shows red col-

oured Au colloidal solution (b) simu-

lated absorption, scattering, and

extinction spectra of exact Au nano-

sphere, imported from TEM, using

FDTD simulations.
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the fluorophore and emission enhancement increases the radi-

ative decay rate thus reducing the luminescence decay time.27

The fluorescence emission rate cem can be related to the exci-

tation rate cexc and the total decay rate c¼ crþ cnr through

the equation28 cem¼ cexc (cr/c), where cr is the radiative decay

rate and cnr is the non radiative decay rate. The emission

probability (cr/c) is also called the quantum yield of the emis-

sion process. Hence, in case of fluorescence enhancement

(increase in quantum yield) by emission enhancement pro-

cess, the radiative decay rate cr increases.

In our case, when Au NPs are conjugated with ZnO:

Al,Eu3þ particles, we have measured the time resolved lumi-

nescence decay under 375 nm excitation of intrinsic ZnO

green emission at 505 nm and 5D0-7F2 red emission of Eu3þ

at 611 nm as shown in Figs. 4(a) and 4(b), respectively. The

decay could be fitted into a bi-exponential equation as given

below

Fit ¼ aþ b1 � e�
t

s1 þ b2 � e�
t

s2 :

The decay curve fittings and results of their detail analysis

are listed in Table I which indicate that decay characteristics

for green emission remain almost similar with and without

Au NPs with a slight change in average decay time. This

suggests that prominent mechanism for green emission

enhancement would be through enhancement of near field

due to presence of Au NPs in proximity. On the other hand,

for red emission, average decay time (Table I) decreases

from 1.02 ls to 0.94 ls after Au NP conjugation. The

decrease in decay time is due to change in Eu3þ environment

and the energy transfer from Au NP to Eu3þ 5D1 level fol-

lowed by phonon relaxation (non-radiative) to the emitting
5D0 level leading to radiative transition to lower 7F2 level

causing fluorescence enhancement for Eu3þ red emission.

The ZnO:Al,Eu3þ nanophosphor under 375 nm excita-

tion emits in the green region with a broad peak centered at

505 nm arising from the intrinsic point defects of ZnO and a

sharp peak at 611 nm due to transitions between f-f levels

(5D0-7F2) of Eu3þ. However, the corresponding integrated

emission spectra (Fig. 1(b)) of ZnO:Al,Eu3þ in propinquity

with Au NPs clearly elucidate enhancements in green fluo-

rescence upto 133% and red emission up to 258% as com-

pared to that of only ZnO:Al,Eu3þ under UV excitation.

Green emission in ZnO under direct band edge excitation

occurs when excited conduction band electrons relax to met-

astable donor state followed by radiative recombination with

holes in the acceptor centre as shown in the energy level dia-

gram (Fig. 4(c)). The mechanism for green emission remains

same when conjugated with Au NPs, but local field enhance-

ment produces a higher excitation rate and fluorescence is

enhanced. The significant fluorescence enhancements could

be attributed to the enhanced EM field of the Au NPs

increasing excitation rate of bound excitons of ZnO. The Au

NPs aptly localize the impinging EM field as near field

around them, contributing towards the fluorescent enhance-

ments. The energy level diagram also shows the energy level

equivalent to the dipolar field generated around Au NP and

energy transfer to ZnO and also direct coupling between the

LSPR and the excited state29 of Eu3þ. For red emission,

there is energy transfer from Au NP to Eu3þ ion resulting in

population of upper levels 5D1 of Eu3þ,19 nonradiative (NR)

energy transfer to lowest emitting state 5D0 and characteris-

tic red emission due to transition to the 7FJ levels.

In summary, we have presented a comprehensive work

involving chemical synthesis of spherical gold nanoparticles,

Al and rare earth Eu3þ codoped ZnO, conjugation of Au NP

and doped ZnO particles in a suitable hybrid structure that

FIG. 3. Near field (jEj2) image of Au

nanosphere by FDTD simulation by

importing exact TEM images of Au NP

at different incident optical field energy

(a) at excitation wavelength 375 nm, (b)

at LSPR wavelength 528 nm, (c) ZnO

emission wavelength 505 nm, and (d)

Eu3þ emission wavelength 611 nm.
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lead to about 258% fluorescence enhancement of red emis-

sion. We have used confocal fluorescence microscopy to

irrefutably establish the fluorescence enhancement from

doped ZnO:Al,Eu3þ particles in proximity of Au NPs due to

LSPR coupling under excitation of UV light. For further sup-

porting the experimental results, we have used FDTD simu-

lation technique for estimating the near field generation by

Au nanospheres, so as to understand the complete phenom-

enon of fluorescence enhancement supported by experimen-

tal and simulated results. Plasmon enhanced green and red

emission under UV excitation have significant applications

in solar cell and nano biotechnology.
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FIG. 4. Luminescence decay curves (a) for 505 nm green emission; (b)

611 nm red emission of ZnO:Al,Eu3þ with and without Au NPs; (c) energy

level diagram showing scheme of excitation and emission process involv-

ing direct excitation across ZnO band gap, green emission from intrinsic

point defects and energy transfer through EM field of Au NPs (black and

red dotted arrows) to ZnO & Eu3þ, respectively, leading to fluorescence

enhancement.

TABLE I. Luminescence decay parameters.

Sample

s1 (ls)

(Rel. %)

s2 (ls)

(Rel. %)

sav ¼ b1 �s2
1þb2 �s2

2

b1 �s1þb2 �s2

(ls)

ZnO:Al:Eu

[Ex-375 nm,Em-505 nm]

0.84 (99.61%) 7.25 (0.39%) 0.86

ZnO:Al:Eu-Au

[Ex-375 nm,Em-505 nm]

0.80 (99.62%) 6.96 (0.38%) 0.82

ZnO:Al:Eu

[Ex-375 nm,Em-611 nm]

0.95 (98.67%) 6.49 (1.33%) 1.02

ZnO:Al:Eu-Au

[Ex-375 nm,Em-611 nm]

0.89 (91.64%) 4.80 (8.81%) 0.94
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