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The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-

C61-butyric acid methyl ester (PCBM) and P3HT:indene-C60 bisadduct (ICBA) polymer solar cells,

with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene

sulfonate anode have been investigated. Degradation occurs via a combination of three primary

pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully

degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells

possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells

having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal

annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration

compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer

morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated �50%

performance restoration over several degradation/regeneration cycles. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4878408]

Polymer solar cells (PSCs) have attracted increasing

worldwide interest due to their unique material properties

that allow the cost effective fabrication of thin, light weight,

and mechanically flexible solar modules via high-throughput

roll to roll production techniques.1 In spite of many chal-

lenges, the power conversion efficiency of these devices has

improved tremendously in the last decade, with p-type conju-

gated polymers blended with n-type fullerenes forming bulk

heterojunction (BHJ) nanostructures showing the most effi-

cient power conversion efficiencies. Single BHJ structures

have demonstrated efficiencies of up to �9%, whereas for

tandem BHJ structures this value now exceeds the 10%

watershed.2–6 Moreover, there is still plenty of room for fur-

ther improvement in the efficiency of these devices with

15%–20% efficient devices already predicted.7

In addition to improved power conversion efficiency,

however, PSCs also need to be sufficiently stable in order to

be commercially viable.8,9 Thus, degradation is an equally

important issue and typically the most efficient solar cells

have yet to demonstrate high stability. Degradation of PSCs

is a complicated process and involves the interplay of several

degradation mechanisms.1,8,10 Indeed, degradation occurs

throughout the device structure, from top to bottom elec-

trode, and causes a loss in the electronic and optical proper-

ties of the devices. Currently, much effort is underway by a

number of research groups in order to understand the rele-

vant degradation mechanisms and hence develop appropriate

mitigation strategies.8,11,12 It is well accepted that H2O and

O2 molecules are the key moieties responsible for PSC deg-

radation.8,13,14 H2O and O2 molecules diffuse into the devi-

ces from the ambient surroundings and react with the

different components in the device structure. For example,

the hygroscopic poly(ethylene-dioxythiophene):polystyrene

sulfonate (PEDOT:PSS) buffer layers used in PSCs readily

absorb H2O molecules from ambient and this process has

been shown to cause rapid PSC degradation.15 Protection of

PSCs via encapsulation is the main approach currently being

developed to impart good device stability, but fabricating

low cost encapsulation materials with low H2O and O2 per-

meation rates remains a key challenge.16,17 Replacement of

the PEDOT:PSS buffer layer with less hygroscopic materials

and the development of inverted solar cell structures have

shown comparatively better stability even without encapsula-

tion.18,19 However, even after proper encapsulation these

devices will still degrade through subsequent photo-chemical

reactions, electrode diffusion, and morphological changes.1

In this Letter, we present an alternative approach to increase

the working lifespan of PSCs through the thermal regenera-

tion of degraded devices. We have investigated the

regeneration of PSCs based on blend films of poly (3-hexyle-

thiophene) (P3HT):indene-C60 bisadduct (ICBA) and

P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM),

with Ca/Al and Ca/Ag cathodes by subjecting them to ther-

mal annealing under inert atmosphere. We demonstrate that

it is possible to regenerate PSCs even after several degrada-

tion/regeneration cycles and that the ability of a given

PSC structure to regenerate depends both on the blend and

cathode materials.

PSCs were prepared on cleaned indium tin oxide (ITO)

coated glass substrates. A thin layer of PEDOT:PSS was

coated onto the ITO substrates by spin coating at 4000 rpm

for 90 s and dried at 140 �C for 30 min. Photoactive layers of

both P3HT:ICBA and P3HT:PCBM blends (1:0.8) were spin

coated from chloroform solutions (18 mg/ml) onto the

PEDOT:PSS films in an inert atmosphere glove box at

2000 rpm for 60 s and pre-heated at 60 �C for 5 min.
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Pre-heating of the active layers is done to remove the solvent

traces in the active layer and 60 �C was found to be the opti-

mum temperature for devices spun from chloroform. The

substrates were transferred to a vacuum evaporation chamber

where the Ca (20 nm) and Al (130 nm) or Ag (130 nm) cath-

ode materials were deposited via thermal evaporation at

�2� 10�6 millibars. After the cathode evaporation, the devi-

ces were subjected to thermal annealing in the glove box,

where P3HT:PCBM devices were annealed at 140 �C for

5 min, and those based on P3HT:ICBA active layer were

annealed at 160 �C for 5 min. The annealing times and tem-

peratures were optimized for maximum power conversion ef-

ficiency. After preparation, the devices were stored in dark

under ambient conditions and tested using a Newport AM

1.5G solar simulator. The solar cells were unencapsulated

and the degradation studies were performed under ambient

conditions (21 6 2 �C and 55% 6 3% relative humidity

(RH)). Once the devices were dead the regeneration of de-

vice characteristics was achieved by subjecting the degraded

devices to thermal annealing in a nitrogen inert atmosphere

glove box. For regeneration, the fully degraded P3HT:PCBM

devices were subjected to thermal annealing at 140 �C for

5 min, whereas those based on P3HT:ICBA active layer were

subjected to thermal annealing at 160 �C for 5 min. A sche-

matic design of the PSC structure is shown in Fig. 1(a). Fig.

1(b) shows the initial dark (solid symbols) and illuminated

(open symbols) J-V characteristics for the P3HT:ICBA and

P3HT:PCBM solar cells with Ca/Al and Ca/Ag cathodes.

The short circuit current density (Jsc), open circuit voltage

(Voc), fill factor (FF), and the power conversion efficiency

(g) of the PSCs are tabulated in Table I, where the error val-

ues corresponds to the standard deviation of measurements

on six devices. The increased initial efficiency of the

P3HT:ICBA devices compared to those based on PCBM

arises from the higher Voc of the ICBA solar cells, which can

be attributed to the difference in lowest unoccupied molecu-

lar orbital (LUMO) level of the two acceptors.20

Fig. 2(a) shows the degradation characteristics of g and

Voc for P3HT:ICBA solar cells with Ca/Ag cathodes. The so-

lar cells were subjected to thermal annealing in the glove

box when they were almost fully degraded and this process

was repeated for subsequent degradation of the devices. Fig.

2(a) shows that the efficiency of the P3HT:ICBA solar cells

exhibited a recovery of up to �50% of the initial value,

while the Voc exhibited a recovery up to �90% of the initial

value. In addition the Jsc and FF recovered to �75% and

�72% of their initial values.21 In contrast, P3HT:ICBA devi-

ces fabricated with a Ca/Al electrode exhibited no recovery

in device efficiency upon thermal annealing in inert atmos-

phere.21 For comparison, the degradation profiles for

P3HT:PCBM solar cells with a Ca/Ag cathode are shown in

Fig. 2(b). The P3HT:PCBM solar cells exhibited a maximum

efficiency regeneration of only up to �15% of the initial

value. This recovery in the efficiency of the P3HT:PCBM

devices arose primarily from a revival in Voc (up to �85% of

its initial value), whereas Jsc only revived up to �35% of its

initial value and no revival in FF was observed.21 As

FIG. 1. (a) Schematic of PSCs structures. (b) Dark (solid symbols) and illu-

minated (open symbols) J-V characteristics of fresh solar cells based on the

active layers of P3HT:PCBM and P3HT:ICBA with Ca /Al and Ca/Ag

cathodes.

TABLE I. Photovoltaic parameters of PSCs with different active layers and

different cathodes. The values in the bracket show the error calculated over

the sets of 6 devices.

Active layer Cathode Jsc (mA/cm2) Voc (V) FF (%) g (%)

P3HT:PCBM Ca/Al 9.96 (0.40) 0.59 (0.00) 0.58 (0.01) 3.44 (0.45)

P3HT:PCBM Ca/Ag 9.33 (0.50) 0.58 (0.01) 0.57 (0.04) 3.08 (0.30)

P3HT:ICBA Ca/Al 9.60 (0.90) 0.83 (0.01) 0.52 (0.01) 4.30 (0.40)

P3HT:ICBA Ca/Ag 9.90 (0.40) 0.81 (0.01) 0.51 (0.3) 4.25 (0.50)

FIG. 2. (a) Degradation profiles of normalized g and Voc for ITO/PEDOT:PSS/

P3HT:ICBA/Ca/Ag solar cells with subsequent thermal annealings at different

time intervals. (b) Degradation profiles of normalized g and Voc for

ITO/PEDOT:PSS/P3HT:PCBM/Ca/Ag solar cells with subsequent thermal

annealings at different time intervals.
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observed for the P3HT:ICBA devices, P3HT:PCBM devices

fabricated with a Ca/Al electrode exhibited no recovery of

device performance upon thermal annealing.21 Previous

work on the degradation of P3HT:PCBM devices with

Ca/Ag and Ca/Al cathodes has identified that the electro-

chemical reactions occurring at the interfaces are complex

and consist of reversible and irreversible processes.22 For the

Ca/Al electrode, the formation of Al2O3 is irreversible and

leads to a degradation of device performance. For the Ca/Ag

electrode, however the corresponding formation of Ag2O is a

reversible process at �140 �C under low (�1 ppm) partial

pressure of O2.

In order to establish the origin of the enhanced recovery

mechanism in P3HT:ICBA solar cells, the effect of anneal-

ing temperature on the regeneration was investigated (Fig.

3). These studies were carried out after the 2nd degradatio-

n/annealing cycle on fully degraded devices. Initially, all of

the parameters increased systematically with increasing

annealing temperature but at high temperatures (>160 �C)

both the Jsc and Voc tend towards an asymptotic value.

Moreover, at these higher temperatures the continued

increase in g is primarily driven by a corresponding increase

in FF. The close correlation of these recovery profiles as a

function of temperature with those observed previously for

corresponding P3HT:PCBM devices22 indicate that the pri-

mary cause for the regeneration seen in the P3HT:ICBA

devices is also the reversibility of the Ag oxidation process.

Further the effect of repeated annealing (140 �C) cycles in an

inert atmosphere on the efficiency of pristine P3HT:PCBM

and P3HT:ICBA solar cells was also investigated and is

shown in Fig. 4(a). Where the P3HT:PCBM solar cells ex-

hibit a rapid reduction in efficiency upon annealing (predom-

inantly because of a correlated reduction in Jsc), the

P3HT:ICBA solar cells exhibited only a modest reduction

(<10%) in efficiency and no deterioration in Jsc (Fig. 4(b)).

FIG. 3. Effect of annealing temperature on the recovery of (a) efficiency and

Voc, (b) Jsc and FF of ITO/PEDOT:PSS/P3HT:ICBA/Ca/Ag solar cells.

FIG. 4. (a) Effect of subsequent thermal annealings on the efficiency of

ITO/PEDOT:PSS/P3HT:ICBA/Ca/Ag and ITO/PEDOT:PSS/P3HT:PCBM/

Ca/Ag solar cells. (b) The effect of thermal annealings on Jsc of the respec-

tive devices.

FIG. 5. Optical (above panel), AFM (central panel), and photocurrent map-

ping (bottom panel) images of ITO/PEDOT:PSS/P3HT:PCBM/Ca/Ag (left

panel) and ITO/PEDOT:PSS/P3HT:ICBA/Ca/Ag (right panel) solar cells af-

ter 12 subsequent thermal annealings in the glove box.
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Previous work has shown that thermal treatment of PSC

devices results in irreversible degradation of the anode. For

example, for devices with ITO anodes, In and Sn are

observed to diffuse into the active layer upon annealing.22

However, since the electrode structure is the same for both

sets of devices the difference in the observed reduction in de-

vice performance seen here can only be attributed to changes

in the active layer morphology and/or composition.

Previous studies have shown that the spectral and mor-

phological properties of blends of P3HT with PCBM and

ICBA are completely different.23 In particular, upon extended

annealing the P3HT:PCBM system undergoes phase segrega-

tion to form highly separated component domains, whereas

ICBA remains miscible for a wide range of polymer compo-

sitions.23 This different behavior of ICBA can be simply

attributed to its structure since ICBA is a bisadduct fullerene

possessing two indene side groups, which hinders its crystal-

lization or aggregation. Furthermore, the ICBA material typi-

cally consists of a mixture of geometric isomers, again

increasing its solubility. The formation of large phase segre-

gated regions is known to lead to device degradation;1 con-

sistent with the systematic decrease in g and Jsc observed in

Fig. 4. For the P3HT:ICBA system, however, this phase seg-

regation does not occur and thus there is effectively no loss in

Jsc after repeated annealing. These conclusions are further

supported by the optical, atomic force microscopic (AFM),

and photocurrent mapping images of the PSCs after 12

annealing cycles shown in Fig. 5. The optical and AFM

images (Figs. 5(a) and 5(c), respectively) clearly show the

formation of large (�10 lm) PCBM aggregates after 12

annealing cycles of the P3HT:PCBM blend films and these

aggregates correlate with regions of lower photocurrent gen-

eration (dark regions in Fig. 5(e)). By contrast, there is no ag-

gregate formation in the P3HT:ICBA films after 12 annealing

cycles (Figs. 5(b) and 5(d)) and there is still uniform photo-

current generation across the film (Fig. 5(f)).

In summary, we can now describe a model for the degra-

dation of these P3HT:Fullerene PSC systems. Device degra-

dation appears to involve three distinct degradation

pathways: (1) cathodic oxidation, (2) active layer phase seg-

regation, and (3) anodic diffusion (Fig. 6). Our previous work

has shown that cathodic oxidation can be reversed thermally

through judicious selection of the cathode materials. In par-

ticular, the use of Ag as the cathode material enables cathodic

oxidation to be reversed at temperatures that are compatible

with the other materials used in the device architecture. In

this Letter, we have shown that active layer phase segregation

can be mitigated through the use of more miscible organic

components. In particular, the use of P3HT:ICBA blends

allows PSC devices to be heated to the temperatures required

for the regeneration of the Ag cathode without substantially

affecting the active layer morphology. Consequently, here we

have shown substantial recovery of the performance of fully

degraded PSC devices through thermal regeneration, with the

devices recovering more than �50% of their original per-

formance, even after a number of degradation cycles. Since

the primary degradation pathway in these devices is now lim-

ited to anodic diffusions, work is currently underway to

explore alternative anode systems that will mitigate this third

degradation pathway and hence fulfill the potential of the

demonstrated regeneration process. As such, this work offers

the tantalizing prospect of a PSC design that can be fully

regenerated through thermal processing.
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