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The variation in optical texture, electro-optic, and dielectric properties of iron oxide nanoparticles

(NPs) embedded ferroelectric liquid crystal (FLC) with respect to change in temperature and

electrical bias conditions are demonstrated in the current investigations. Improvement in spontaneous

polarization and response time in nanocomposites has been attributed to magneto-electric (ME)

coupling resulting from the strong interaction among the ferromagnetic nanoparticle’s exchange field

(due to unpaired e�) and the field of liquid crystal molecular director. Electron paramagnetic

resonance spectrum of FLC material gives a broad resonance signal with superimposed components

indicating the presence of a source of spin. This paramagnetic behavior of host FLC material had

been a major factor in strengthening the guest host interaction by giving an additional possibility of

(a) spin-spin interaction and (b) interactions between magnetic-dipole and electric-dipole moments

(ME effects) in the composite materials. Furthermore, the phenomenon of dielectric and static

memory effect in these composites are also observed which yet again confirms the coupling of

magnetic NP’s field with FLC’s director orientation. We therefore believe that such advanced soft

materials holding the optical and electrical properties of conventional LCs with the magnetic and

electronic properties of ferromagnetic nanoparticles are going to play a key role in the development

of futuristic multifunctional optical devices. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4869740]

INTRODUCTION

Among all the emerging research wings focusing on

Ferroelectric Liquid Crystals (FLCs), one of the latest emerg-

ing research areas being the study of composites of FLCs dis-

persed with magnetic/ ferromagnetic nanoparticles (NPs) with

an idea of exploring the potential of developing multifunc-

tional FLC based devices. The dielectric and diamagnetic

properties of these chiral smectic LCs enable their optical

properties to be controlled by applying electric or magnetic

fields.1–15 However, in practice, most liquid crystal based

devices so far have been driven by electric fields. Although

some early studies suggest the possibility of controlling LC’s

optical properties by external magnetic field, but generally it

cannot be employed due to their feeble sensitivity to magnetic

field and very low diamagnetic permeability anisotropy of

chiral smectic phases. Therefore, to enhance the functionality

of LC based devices, steps are being taken towards develop-

ing new magneto-electric (ME) or multi-ferroic (MF) soft

materials which can be easily tuned by various external

stimuli.16–18 There are two ways to achieve this: by synthesiz-

ing new soft materials (metallomesogens, all-organic chiral

radical LCs, etc.) with inherent magneto-electric coupling or

by developing composites of two ferroic phases.19 ME and

MF effects of soft materials can be employed to realize mag-

neto- and electro-optic storage devices.

This journey began with the pioneering work of

Brochard and de Gennes20 who, for the first time, coined the

term “ferronematics” for referring a mixture of ferromag-

netic NPs (FM NPs) and Nematic LCs and theoretically

predicted a remarkable enhancement in magnetic field sensi-

tivity of nematic LCs in the presence of low concentrations

of FM particles. This fact was later proved experimentally

by Chen and Amer21 in their investigation on

“ferronematics” and motivated many successive studies

thereon.22–24 Now, It is not only limited to the FM character-

istic of NPs but the size and morphology of NPs have also

been found to beautifully engage themselves in tuning the

properties of nematic and ferroelectric LC mixtures.23 For

example, Nematic LCs and the chiral nematic LCs could be

perfectly aligned in homeotropic and planar geometries by

doping a trace of Ni nanospheres and nanobowels owing to

the morphology and surface adsorption of FM NPs on under-

lying substrate. In comparison to Nematic LC, mixtures of

FM NPs and ferroelectric LCs which have two fundamental

ferroic orders: i.e., ferroelectric and ferromagnetic and thus

proves to be more advantageous over ferronematics in terms

of recognizing coupling of ferroic orders in constituent

phases. In our recent study, we have considered the coupling

of strong intrinsic field of Ni NPs with liquid crystal molecu-

lar director field to demonstrate a tunable optical memory

effect and fast electro-optic response in ferroelectric liquid

crystal dispersed with ferromagnetic nickel nanoparticles.17

In another report, SQUID and calorimetric measurements on

mixtures of magnetic iron oxide (Fe2O3) NPs and FLCs
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suggested the direct coupling of orientation of magnetic NPs

and liquid crystal director field which also affected collective

dielectric relaxation processes (Goldstone and Soft Mode)

significantly.13 Recent study on Ni NPs-FLCs composites

indicated the occurrence of strong dipole interactions

between Ni nanoparticles and FLC molecules in the presence

of applied electric field which may lead to improved trans-

mittance and fast switching response.25 By considering all

the previous studies, it can be stated that direct coupling

between the orientation of LC molecules and the orientation

of magnetic NPs within the host material may lead to the

indirect coupling between the ferroic orders thereby resulting

into new phenomenon and application potential of soft multi-

ferroic materials.

Magnetic NPs of oleic acid coated Fe2O3 belong to an

important class of artificial nanostructured materials for their

great potential from application point of view in magnetic

storage media and biomedicine as well as fundamental sci-

ence associated with size driven phenomenon of superpara-

magnetism, quantum tunneling, and quantum

confinement.26–28 In the present study, we have investigated

the mixture of iron oxide NPs (�24 nm) coated with oleic

acid surfactant and FLC by temperature-bias dependent

dielectric and electro-optic studies. Incorporation of

nano-magnetic particles leads to static and dielectric memory

effects as well as various interesting changes in physical

behavior of composite materials which will be discussed in

detail in the present manuscript.

EXPERIMENTAL

Electro-optic cells for present study consisted of conduct-

ing (�30 X) indium tin oxide (ITO) coated glass plates with

etched squared pattern of 4.5� 4.5 mm to work as electrode.

The patterned and pre aligned (in present case homogenous)

substrates were assembled to form a sample cell by placing

mylar spacer of known thickness just outside the conducting

area. In present case, we have used mylar spacers of 3 lm

thickness and the resultant thickness of the empty cells were

6.6 lm. Homogeneous alignment on the patterned glass plates

was obtained using conventional rubbed polyimide technique.

The FLC-iron oxide NPs composites were fabricated by intro-

ducing their mixture into the cells by means of capillary

action at temperatures just above the Nematic-Isotropic transi-

tion temperature. Suspension of Iron oxide NPs was prepared

by dispersing the NPs in oleic acid and deionised (DI) water

in ratio of 1:0.5:100 (NPs:oleic acid:DI Water).

First of all, 1 mg of iron oxide NPs and 0.5 mg of oleic

acid were mixed in 100 ml water. The resulting solution con-

tains 0.01 mg/ml nanoparticles. Above suspension was ultra-

sonicated for 1 h before dispersing their selective amount

into FLC material. 0.1 ll of this suspension, having

0.000001 mg Fe2O3 nanoparticles was dispersed in 4 mg

FLC, i.e., 0.25 � 10�5 wt. %. Similarly, other composition

of 0.5 ll of NP’s suspension was taken in 4 mg FLC (1.25 �
10�5 wt. %). These mixtures were rigorously mixed and

heated repeatedly to ensure homogenous dispersion of NPs

among FLC and completely evaporation of solvent. Phase

sequence of investigated FLC, i.e., ZLi 3654 is as follows:

Cryst:  !�30 �C
SmC�  !62 �C

SmA�  !76 �C
N�  !86 �C

Iso:;

where Cryst., SmC*, SmA*, N*, and Iso. represent crystal,

chiral smectic C, chiral smectic A, chiral nematic, and

isotropic phases respectively. The helical pitch of ZLi 3654

material is 3.3 lm.

To characterize size, morphology, and distribution of

iron oxide NPs, High Resolution Transmission Electron

Microscopy (HRTEM; Tecnai G2F30 S-Twin) was used.

Sample for HRTEM analysis was prepared by dispersing iron

oxide NPs in acetone through ultrasonication and drying a

droplet of the dispersion on a carbon coated copper grid at

room temperature. Optical micrographs of the pure as well as

NPs dispersed sample cells were taken with the help of a

polarising optical microscope (Ax-40, Carl Zeiss, Gottingen,

Germany) fitted with charge coupled device (CCD) camera.

The temperature and bias dependent capacitance of sample

cells have been measured using an impedance analyser

6540 A (Wayne Kerr electronics, West Sussex, UK) con-

nected with JULABO F-25 HE temperature controller

equipment (Julabo, Seelbach, Germany) with a temperature

stability of 60.01 �C. Sample holder containing the sample

cells was kept thermally isolated from the external sources.

Material parameters, such as spontaneous polarization (Ps)

and rotational viscosity (g) with variable electrical bias, were

measured by automatic liquid crystal tester (ALCT, Instec,

Boulder, CO, USA). Electron Paramagnetic Resonance

(EPR) spectrum of FLC mixture ZLi 3645 and Fe2O3 NPs

were recorded by A300 Bruker Biospin, X-band EPR spec-

trometer at ambient temperature in 3500 6 2500 G range.

Sample is inserted in a transition metal ion free quartz capil-

lary tube of Internal Diameter of 1.00 mm. The sample tubes

were placed at the center of circular EPR cavity to exclude

asymmetry in resonance signal induced by electric compo-

nent of the microwave field. DC magnetic field was modu-

lated at 100 kHz frequency and modulation amplitude was

kept 6 G to avoid distortion in EPR line shape. Microwave

power was also kept very low (23 dB) to avoid any saturation

effect. EPR spectrum is generally recorded by scanning the

magnetic field (H) at constant microwave frequency (i.e.,

9.36 GHz in X-band EPR spectrometer). The position of EPR

line depends upon the ratio of H to � and the effective gyromet-

ric factor (g-value). g-value is defined as the constant of propor-

tionality between the frequency and the field at which resonance

occurs and proportional to the magnetic moment of the mole-

cule under study. DPPH (1,1-Diphenyl 2-picryl hydrazyl) was

used as a standard reference sample for g-value determination.

RESULTS AND DISCUSSION

In Figure 1(a), TEM micrographs revealed the morphol-

ogy of iron oxide NPs which are spherical in shape with an

average particle diameter of �24 nm and a narrow size distri-

bution. In Figure 1(b), the image of a single particle clearly

shows that lattice plane are well aligned and the distance

between two lattice planes is about 0.307 nm.

Textural changes caused by dispersing iron oxide NPs

into FLC material were checked by recording high resolution

optical micrographs of sample cells under a crossed polarizer

124905-2 Goel, Arora, and Biradar J. Appl. Phys. 115, 124905 (2014)
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and it was found that NPs were uniformly dispersed. A close

observation reveals strip like domains in iron dispersed sam-

ples which might be due to chain like alignment of magnetic

NPs within the host material.

EPR spectrum of iron oxide nanoparticles (Fig. 2) shows

broad resonance signal with g-value of 2.0323. The broad-

ness of the signal (peak-to-peak line width (DHpp)� 1000 G)

confirms the ferromagnetic behavior of these nanoparticles

and strong dipolar-dipolar interactions among them. This

resonance signal arises due to Fe3þ in octahedral symmetry.

The increase in magnetic crystalline anisotropy and the ran-

dom orientations of the particles of the monodomain ferro-

magnetic particles attributes to the strong dipolar-dipolar

interaction and broadness of peak.

Behavior of spontaneous polarization on application of

electrical bias in ZLi 3654 and iron oxide NPs dispersed sam-

ples is compared in Figure 3(a). A gradual enhancement in Ps

can be noted with 0.1 and 0.5 ll NPs addition in FLC. Not

only this but also the presence of iron oxide NPs makes it eas-

ier to get Ps saturation at lower bias voltages in comparison to

pure FLC. For samples containing iron oxide NPs, maximum

values of Ps could be achieved at 5 V, whereas in pure FLC,

Ps saturates at 7.5 V bias. As reported earlier, FM Ni NPs also

modified the Ps values of host material depending on the kind

of interaction occurring among the dispersed NPs and

FIG. 1. High resolution transmission

electron micrographs. (a) TEM images

of the iron oxide NPs (average size of

NPs is 24 nm). (b) HRTEM image of

NPs.

FIG. 2. Broad EPR resonance signal of Fe2O3 nanomagnetic particles with

g-value of 2.0322 of Fe3þ ions with octahedral site symmetry exhibiting

strong dipolar-dipolar interaction and ferromagnetic behavior.

FIG. 3. Electrical Bias dependent behavior of (a) spontaneous polarization

(Ps), (b) rotational viscosity (g), and (c) response time (s) of FLC and FLC-

iron oxide NPs dispersions at room temperature.
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ferroelectric liquid crystal molecules.17 Interface bonding

mechanism at the FM NPs/ferroelectric LC interface were

considered the main mechanism responsible for modifying Ps

behavior of samples with low doping concentration of FM

NPs whereas exchange interaction dominates in high doping

concentrations. In comparison to our previous report on Ni

NP doped FLCs, we get a much better profile of Ps along with

a decrease in saturation voltage with iron oxide NPs addition,

which can be a consequence of the “size effect” phenomenon

in FM NPs itself and the chemical constitution of ferroelectric

material used. We explained this as follows: If the underlying

FLC material is composed of any free radical (unpaired elec-

tron), the interaction among the FM NPs exchange field (due

to unpaired e�) and FLC molecular director would be much

greater than the kind of interaction previously predicted for

diamagnetic FLCs in Ref. 24. The FLC mixture used for pres-

ent study consists of two basic compounds:

In structural formula of compound (i), which is the main

chiral component of FLC mixture, there is an asymmetric

carbon (indicated by *) which showed the generation of a

sort of spin glass-like inhomogeneous ferromagnetic interac-

tions (the average spin-spin interaction constant J> 0) in the

bulk liquid crystalline state under weak magnetic fields, has

a spin easy axis or exhibits anisotropic magnetic interactions

in the SmC* phase. This chiral centre is a source of free

spin. To establish this, room temperature EPR spectrum of

FLC mixture ZLi 3645 is recorded. As shown in Fig. 4, this

sample gives a broad resonance signal with superimposed

components which may arise from the starred carbon radical.

The broadness of the signal is attributed to strong dipolar-

dipolar interactions among these spin-glass like FLCs. The

g-value of the obtained resonance signal is 2.0036, i.e., close

to free electron g-value (2.0023), which suggests that the

resonance comes from the delocalization of the electrons in

the p-bonded system of these FLCs via –COO and –CHCl

chiral group. In this FLC, the starred C atom is chiral centre

which is bonded to four different groups. This centre form

stable free radical by the homolytic fission of either C–H or

C–Cl bond facilitated by the delocalization of p-electron of

C¼O bond of adjacent carboxylic group.

This paramagnetic behavior of host FLC material gives

an additional possibility of (a) spin-spin interaction and (b)

interactions between magnetic-dipole and electric-dipole

moments (ME effects) in the FLC-FM NPs composites.18

Therefore, it is not only the effect of inter-particle interaction

among the dispersed FM NPs but also the direct ME and

exchange interaction among LC molecules and FM NPs which

in turn strengthens the interfacial bonding between two phases

and thereby affects the polarization switching in composite

system. Additionally, in iron oxide NPs dispersed FLCs, rota-

tional viscosity (Fig. 3(b)) (i) reaches to maximum around 3 V

bias and (ii) continuously decreases thereafter. As a result,

response time (which is another vital parameter for display

application) of composite material as shown in Fig. 3(c) also

decreases with increasing electrical bias above saturation bias

voltage. This behavior again indicates that the internal electri-

cal field due to FLC’s electrical dipoles is modified in the pres-

ence of intrinsic magnetic field of iron oxide particles.

To further analyze the effect of ME coupling and inter-

facial bonding, textural changes in the iron dispersed sam-

ples were recorded in the presence of d.c. bias field. These

changes were recorded at different electrical bias conditions

using POM and shown in Figs. 5(a)–5(d). Scattered/dark

state of the sample (0.1 ll iron oxide NPs) is shown in

Fig. 5(a). Application of 20 V bias across the sample cell

brings it to a perfect bright state (Fig. 5(b)) which remains as

it is after releasing the bias (Fig. 5(c)). Such static memory

FIG. 4. EPR spectrum of ZLi 3654 mixture in Sm C* phase with g-value of

2.0032 submerged in broad asymmetric resonance signal.

FIG. 5. Room temperature optical micrograph of (a) scattering state before

any bias application, (b) completely switched bright state on application of

20 V bias, (c) state after removal of bias, and (d) state after 8 min of bias re-

moval in 0.1 ll iron oxide NPs dispersed FLC mixture.
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effect was also demonstrated for Ni NPs doped FLCs and

explained on the basis of spin dependent screening of electric

field in FM/ferroelectric LC mixtures. Memory effects

(dielectric and electro-optical) of varied time period have

also been reported for gold NPs, ferrofluid, zirconia NPs

doped LCs, etc., at different electrical bias, temperature con-

dition. In such mixtures, samples attain their previous state

over a certain time period depending on how strongly the

depolarizing field is being compensated in the presence of

secondary phase nanoparticles. In general, application of

appropriate external bias on FLC material causes helix defor-

mation and unwinding which creates a depolarizing field in

the direction opposite to induced polarization. In order to

minimize the free energy of system, depolarization field

works against the changes in material’s polarization and

forces the molecules back to their previous orientation on the

removal of bias. Another factor is the rotational viscosity of

the material which can play an important role in relaxing the

molecules back to their previous state. A higher viscosity

system is more probable to manifest an electro-optic memory

state, since it exerts a higher resistance while molecular

director changes its orientation. However, in present case,

viscosity of system decreases with FM NPs addition, there-

fore, the observed electro-optic memory state in FLC-FM

NPs mixtures cannot be ascribed to the viscosity driven

effects. Rather it has been attributed to the strong interaction

between FLC molecular director and FM NP’s intrinsic mag-

netic field which modifies the depolarizing field forces which

in turn affects the electro-optical states of samples very

significantly.

In iron containing samples, complete scattered state was

not obtained even after shortening the sample. The optical

texture recorded after 8 min of releasing the bias has been

shown in Fig. 5(d). There occurs an intermediate state (com-

posed of some dark domains) which is neither perfectly bright

nor perfectly dark. This might be due to a change in the orien-

tational distribution of FM NPs among the FLC mixture and

formation of magnetic domains in the process of applying

and releasing electrical bias. These domains could be

dissociated only on the application of a high frequency low

voltage signal or by changing the temperature of samples.

Manifestation of strong interfacial coupling between NPs

and FLC molecules can also be seen through the frequency-

bias-dependent dielectric permittivity (e0) response of the sam-

ples containing iron oxide NPs. As shown in Figure 6(a), the

magnitude of e0 is very large in low frequency range (<1 KHz)

and that is mainly due to the Goldstone mode (phase fluctua-

tions) contribution. Application of 20 V bias suppresses the

permittivity to a very low value owing to the suppression of

Goldstone mode (deformation and unwinding of helix) which

is the main contributor to dielectric permittivity in lower fre-

quency regime. After releasing this electrical bias, sample

could attain only 50% of the actual value of dielectric permit-

tivity in iron oxide doped samples. Dielectric permittivity was

further recorded after 1 h of releasing the bias, but e0 value was

still much lower than its value in no bias state. This again con-

firms that the application of d.c. bias changes the orientational

ordering of NPs and forces the molecular director to clamp in

an intermediate state as demonstrated through the bias depend-

ent optical textures studies. In pure samples also, dielectric

permittivity attains its normal value in 50 s after releasing the

bias which is due to the relatively higher viscosity of paramag-

netic chiral LC material ZLi 3654 in comparison to typical dia-

magnetic FLCs. Since rotational viscosity of iron oxide

dispersed samples shows a decreasing trend with increasing

bias, we again believe that effect of ME coupling and strong

interfacial bonding is letting the e0 in a suppressed state even

after a long time of releasing the electrical bias. Similar trend

of dielectric memory state was confirmed up to the Sm

C*-SmA* transition temperature of material (Fig. 6(b)), the

only difference is that memory state could be observed at a

lower bias as the temperature reaches near transition.

CONCLUSIONS

Current study demonstrates the effect of ME coupling on

display parameters as well as electro-optic and dielectric

behavior in nanomagnetic iron oxide NPs and ferroelectric

FIG. 6. Frequency-bias-temperature-dependent dielectric permittivity (e’) spectra of 0.1 ll iron oxide NPs mixed FLC sample at (a) 30 �C and (b) 60 �C.
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liquid crystal composites. Incorporation of iron oxide NPs

makes it easier to get better profile of display parameters, i.e.,

Ps and s, at lower saturation voltages in comparison to pure

FLC. The improvement in Ps and s has been a consequence of

the strong interaction among the FM NPs exchange field (due

to unpaired e�) and FLC molecular director. It has also been

established that the presence of free radical (unpaired elec-

tron) in FLC material would strengthen the guest host interac-

tion. EPR spectra of pure FLC mixture showed the generation

of a sort of spin glass-like inhomogeneous ferromagnetic

interactions (the average spin-spin interaction constant J> 0)

in the bulk liquid crystalline state under weak magnetic fields

which indicated that asymmetric carbon in chiral component

of FLC mixture, has a spin easy axis or exhibits anisotropic

magnetic interactions in the SmC* phase. This chiral centre

acts a source of free spin and played a role in modifying the

internal electrical field due to FLC’s electrical dipoles in the

presence of intrinsic magnetic field of iron oxide particles.

However, these are just preliminary results with their plausible

explanation and hence further crucial experiments and simula-

tions are required to probe the exact mechanism behind such

magneto-electric coupling. We are pretty sure that these iron

oxide NPs mixed FLC nanocomposites are definitely going to

play their indispensible role in the production of new genera-

tion multifunctional FLCs electro-optical devices.

ACKNOWLEDGMENTS

The authors sincerely thank Professor H. S. Gupta,

Director, IARI for continuous encouragement and interest in

this work. One of the authors (P.G.) is also thankful to DST,

New Delhi for financial support under Project No. SR/WOS-

A/PS-68/2011 and INSPIRE Faculty Scheme.

1G. W. Taylor, Ferroelectric Liquid Crystals—Principles, Preparations
and Applications (Gordon & Breach, New York, 1991).

2P. Kopcansky et al., Czech. J. Phys. 51, 59 (2001).
3Y. D. Gu and N. L. Abbott, Phys. Rev. Lett. 85, 4719 (2000).
4H. S. Kitzerow et al., Chirality in Liquid Crystals (Springer, Berlin,

Germany, 2001).
5R. Pratibha et al., J. Appl. Phys. 107, 063511 (2010).
6F. V. Podgornov et al., Appl. Phys. Lett. 97, 212903 (2010).
7P. Malik et al., Adv. Condens. Matter Phys. 2012, 853160.
8P. Arora et al., Mol. Cryst. Liq. Cryst. 502, 1 (2009).
9M. K. Paul et al., Liq. Cryst. 41, 635 (2014).

10S. K. Gupta et al., Curr. Appl. Phys. 13, 684 (2013).
11Neeraj and K. K. Raina, Physica B 434, 1 (2014).
12R. Manohar et al., Polym. Compos. 31, 1776 (2010).
13A. Kumar et al., Appl. Phys. Lett. 100, 054102 (2012).
14P. Goel, RSC Adv. 4, 11351 (2014).
15P. Goel et al., Liq. Cryst. 39, 927 (2012).
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