Tripathi, Rahul and Awana, V. P. S. and Kishan, H. and Balamurugan, S. and Bhalla, G. L. (2008) Impact of Silver Addition on Room Temperature MagnetoResistance in La0.7Ba0.3MnO3 (LBMO): Ag x (x=0.0, 0.1, 0.2, 0.3, 0.4). Journal of Superconductivity and Novel Magnetism, 21 (2). pp. 151-159. ISSN 1557-1939

[img] PDF - Published Version
Restricted to Registered users only

Download (1059Kb) | Request a copy


La0.7Ba0.3MnO3 (LBMO):Agx (x = 0.0, 0.1, 0.2, 0.3, and 0.4) composites are synthesized by solid-state reaction route, the final sintering temperatures are varied from 1300 (LBMO1300Ag) to 1400 0C (LBMO1400Ag), and their physical properties are compared as a function of temperature and Ag content. All samples are crystallized in single phase accompanied by some distortion in main structural phase peaks at higher angles with increase in silver content. Though the lattice parameters (a, c) decrease, the b increases slightly with an increase in Ag content. The scanning electron micrographs (SEM) showed better grains morphology in terms of size and diffusion of grain boundaries with an increase in Ag content. In both LBMO1300Ag and LBMO1400Ag series the metal insulator transition (TMI) and accompanied paramagnetic-ferromagnetic transition (TC) temperatures are decreased with increase in Ag content. The sharpness of MI transition, defined by temperature coefficient of resistance (TCR), is improved for Ag added samples. At a particular content of Ag(0.3), the TMI and TC are tuned to 300K and maximum magneto-resistance at 7Tesla applied field (MR7T) of up to 55% is achieved at this temperature, which is more than double to that as observed for pure samples of the both 1300 and 1400 0C series at same temperature. The MR7T is further increased to above 60% for LBMOAg(0.4) samples, but is at 270K. The MR7T is measured at varying temperatures of 5, 100, 200, 300, and 400K in varying fields from +/- 7 Tesla, which exhibits U and V type shapes. Summarily, the addition of Ag in LBMO improves significantly the morphology of the grains and results in better physical properties of the parent manganite system.

Item Type: Article
Additional Information: Copyright for this article belongs to M/s Springer Verlag .
Subjects: Physical Chemistry/Chemical Physics
Depositing User: Ms Neetu Chandra
Date Deposited: 10 Mar 2015 10:08
Last Modified: 10 Mar 2015 10:08

Actions (login required)

View Item View Item