
A comparative approach for the characterization of a pneumatic piston gauge up to 8 MPa

using finite element calculations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Meas. Sci. Technol. 22 025103

(http://iopscience.iop.org/0957-0233/22/2/025103)

Download details:

IP Address: 59.144.72.1

The article was downloaded on 23/08/2011 at 10:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0957-0233/22/2
http://iopscience.iop.org/0957-0233
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY

Meas. Sci. Technol. 22 (2011) 025103 (10pp) doi:10.1088/0957-0233/22/2/025103

A comparative approach for the
characterization of a pneumatic piston
gauge up to 8 MPa using finite element
calculations
Sugandha Dogra, Jasveer Singh, Abhishek Lodh, Nita Dilawar Sharma
and A K Bandyopadhyay

Pressure and Vacuum Standards, National Physical Laboratory, New Delhi 110012, India

E-mail: ndilawar@mail.nplindia.org

Received 19 May 2010, in final form 12 November 2010
Published 23 December 2010
Online at stacks.iop.org/MST/22/025103

Abstract
This paper reports the behavior of a well-characterized pneumatic piston gauge in the pressure
range up to 8 MPa through simulation using finite element method (FEM). Experimentally, the
effective area of this piston gauge has been estimated by cross-floating to obtain A0 and λ. The
FEM technique addresses this problem through simulation and optimization with standard
commercial software (ANSYS) where the material properties of the piston and cylinder,
dimensional measurements, etc are used as the input parameters. The simulation provides the
effective area Ap as a function of pressure in the free deformation mode. From these data, one
can estimate Ap versus pressure and thereby Ao and λ. Further, we have carried out a similar
theoretical calculation of Ap using the conventional method involving the Dadson’s as well as
Johnson–Newhall equations. A comparison of these results with the experimental results has
been carried out.

Keywords: pressure balance, pressure metrology, finite element analysis

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the pneumatic pressure region up to 8 MPa, although
the pressure-induced distortion of the effective area as a
function of pressure Ap is notably smaller than the hydraulic
pressure region above 100 MPa, it is still considerably high
and contributes significantly to the overall uncertainty of the
measurement in pressure. For this reason the evaluation
of Ap of a piston–cylinder assembly has been carried out
both experimentally and theoretically. A number of different
theoretical techniques have been employed in the past for these
evaluations so that the difference between them is reasonably
reduced. To derive the effective area of a particular piston–
cylinder combination by numerical methods, one needs to be
able to calculate force due to applied line pressure acting on
the cross-sectional area of the lower end of the piston, allowing
for the change of cross-section at that end due to combined

effects of axial and radial compression as well as the vertical
component of force due to the pressure acting on the sides of
the piston.

The basic problems due to which theoretical estimations
suffer are (1) the geometric irregularities of the surface area
in the clearance between the piston–cylinder assembly, (2)
the vertical force distribution on the piston–cylinder under
compression, (3) the pressure gradient in the clearance length
between the piston and the cylinder [1]. All the components are
interdependent and complex in nature, and very few available
methods provide solution. It is for this reason a number of quite
different techniques have been reported to be used, and among
them application of the finite element method (FEM) has been
quite significant and important [2, 3]. The complexity of the
geometry and the boundary conditions makes the FEM more
reasonable in solving mechanical problems. Pressure balance
modeling traditionally considered that undistorted piston and
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Figure 1. Schematic of NPL-8A with dimensions.

cylinder are perfectly round and perfectly straight. Although
attempts have been made to take into account real shapes
of pistons and cylinders, these have always been based on
deriving some averaged profile for piston and cylinder that is
then used as the basis for the axisymmetric model.

In addition, the elastic theory by Dadson and Peggs
[4, 5] has been quite successful. In this paper, we will
report a brief study of a piston gauge in pneumatic pressure
range up to 8 MPa using the above-mentioned FE analysis
using ANSYS and compare the results to those obtained from
Dadson’s theory as well as from the cross-float experiments.
The simulation has been done using the simplest 2D modeling
of the piston–cylinder assembly.

This simulation using FEM involves making an initial
approximation at pressure distribution along the gap, the
simplest approach being to assume initial linear pressure
distribution, and use this pressure distribution as input to
solution of structural deformation problem. Simplified
equations require one to know the radius of the piston and
inner radius of the cylinder, which have been measured at
Dimension Measurements Laboratory at NPLI.

2. Experimental details

2.1. Description of the NPL-8A piston gauge

NPLI-8A is an oil-lubricated simple piston–cylinder system
capable of measuring the full-scale pneumatic pressure up
to 8 MPa. It is a DH-Budenberg made model 5502 with
piston–cylinder serial no 2943. The diagrammatic view of the
NPL-8A piston–cylinder assembly with important geometrical
characteristics is shown in figure 1. The relative motion
between the piston and the cylinder is obtained by a motor
mounted away from the piston–cylinder assembly. The
cylinder sits in a cavity and is held by a retaining nut at the
top. Although not directly, the bottom of the cylinder still
experiences the applied pressure.

Table 1. Input parameters for the basic FEA model: geometry and
material properties.

Geometry (mm)
Piston radius 3.949 975
Initial clearance 0.000 675
Cylinder radius (inner) 3.950 65
Cylinder radius (outer) 8.5
Cylinder length 27.21
Piston length 47.77
Engagement length 27.21

Material properties
Piston
Young’s modulus 630 GPa
Poisson’s ratio 0.218
Cylinder
Young’s modulus 630 GPa
Poisson’s ratio 0.218

This pressure balance has participated in many
intercomparisons and key comparisons [6–8]. The dimensions
of the NPLI-8A piston–cylinder assembly have been estimated
at the Dimension Metrology division at NPLI. A number of
measurements are carried out at three different heights and at
different angles. The mean measured diameters of the piston
and cylinder are 7.899 95 and 7.9013 mm respectively. The
expanded uncertainty in measurement is ±0.7 μm at coverage
factor k = 2. However, since only the radii values for the piston
and cylinder are being used for computations, the expanded
uncertainty would be approximately ±0.5 μm at k = 2
[9]. The piston and cylinder have radii of 3.949 975 and
3.950 65 mm respectively, and their corresponding areas are
4.901 6079 × 10−5 and 4.903 2833 × 10−5 m2 respectively.
Therefore, the effective area Ao (initial area) is 4.902 445 586 ×
10−5 m2, which is the arithmetic mean between the area of the
piston and that of the cylinder. The initial clearance between
the piston and cylinder is ho = 0.675 μm along the engagement
length. The nominal outer diameter of the cylinder is 17 mm.
Both the piston and cylinder are made of tungsten carbide with
Young’s modulus E as 630 GPa and Poisson’s ratio as 0.2181.
The values of Young’s modulus and Poisson ratio have been
taken from the manufacturer’s data. Table 1 lists the input
parameters used for FEM simulations.

2.2. Reference standard

The reference standard is designated as NPLI-4 and is a dead
weight tester, manufactured by Ruska Inc., Texas, USA, model
no 2465, piston serial no V-607, with a nominal effective
area of 8.4 mm2. Its piston–cylinder assembly is capable of
measuring the pressure over a range of 0.2–4 MPa. This was
used as a reference standard in the APMP.M.P-k1c during
1999–2001 [6].

In NPLI-4, both the piston and the cylinder are made
of cemented tungsten carbide with 6% Co. The relative
motion of the gas-lubricated piston is obtained by rotating
the cylinder around the piston to relieve friction. The
zero pressure effective area [Ao] and pressure distortion
coefficient [λ] for this standard are traceable to the Ultrasonic

1 Operation Manual DH-Budenberg Dead Weight Tester Model 5502.
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Interferometer Manometer at NPL through a continuous
unbroken chain. The zero pressure effective area at 20 ◦C
was found to be 8.392 198 × 10−6 m2 and the pressure
distortion coefficient is 4.88 × 10−6 MPa−1 [10]. NPLI-4
has participated in bilateral comparison with PTB Germany
in 1988 and with NIST, USA, in bilateral comparison
APMP.SIM.M.P-k1c [7]. The relative stability of Ao during
the span of the last 20 years has remained within 4 × 10−6. The
expanded uncertainty of NPLI-4 in pressure has been recently
re-established and has been estimated to be 22 × 10−6 at k =
2 [11].

2.3. Experimental procedure

The two units were intercompared using the cross-float
technique for the piston gauges. All measurements were
carried out in a controlled environment with the ambient
maintained at a temperature of 23 ± 1 ◦C and the relative
humidity at 50 ± 5%. The piston gauges were mounted on a
heavy stainless steel base to minimize vibrations and magnetic
effects. Purified nitrogen gas was used as the pressurizing
medium. About 15 min of time was allowed for changes in
pressure to stabilize and bring the system into equilibrium.
The pressure reference level of the two piston gauges was
identified as the mid-stroke position when both pistons were
in equilibrium position. A pressure head correction term
was applied to compensate for the difference in the reference
levels of the pistons. The observations were taken at nominal
pressure values of 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6
and 4 MPa and three increasing as well as three decreasing
pressure cycles were completed.

3. Estimation of the effective area Ao

The experimental zero pressure effective area was obtained by
conventional cross-floating of the two piston gauges. Although
the working temperature was controlled around 23 ◦C, the
calculations were done at 20 ◦C. Hence, the effective area of
the test standard for each observation at 20 ◦C was calculated
using the equation

Ap =
∑

i migi(1 − ρair/ρm)

P1[1 + (αp + αc)(T − T0)]
, (1)

where P1 is the standard generated pressure at the bottom of
the piston, mi is the mass of the weights, ρair and ρm are the
densities of air and mass respectively, αp and αc are the thermal
expansion coefficients of the piston and cylinder respectively,
gi is the local acceleration due to gravity, T is the temperature
of the piston–cylinder assembly and T0 is the temperature at
which A0 is specified. The average value of the effective area
at each pressure point from n = 6 observations is

Ap,av =
∑n

k=1 Ap,k

n
. (2)

The effective area data from the test standard at each
observation have been fitted by least-squares regression to the
linear distortion model:

Ap = a + bP1 = Ao(1 + λP1) (3)

Figure 2. Model of the piston–cylinder assembly with key points
used for calculations.

to determine the value of zero pressure effective area A0, and
the distortion coefficient λ. Hence, a = A0 and b = Ao λ.
The uncertainty in the effective area is computed using the
specified ISO and NABL guidelines [12].

4. Modeling of piston and cylinder for elastic
distortion calculation

As already mentioned, the elastic distortion of the piston
and cylinder was determined by simulation using ANSYS
FEM program. Both the effective area after distortion and
distortion coefficient must be known with accuracy and should
be comparable with the theoretically calculated value of the
distortion. In order to make a consistency check it was
decided to determine the zero pressure effective area of the
NPLI-8A from both theoretical calculations using Dadson’s
equations [4], FEM simulation, and by extrapolating the graph
of the experimental effective area versus pressure. Also, as
already mentioned, the effective area at atmospheric pressure
is determined by taking into consideration the diametrical
measurements from our dimensional metrology laboratory. As
already mentioned, a number of measurements were carried
out at three different heights at different angles, and the mean
values of these results have been taken.

Prior to computation, a model of the piston–cylinder
assembly was designed. The piston–cylinder assembly is
taken as a 2D model [2, 3, 13] assuming axial symmetry
as shown in figure 2. Assuming point no 8 in figure 2
as the origin, the coordinates of the other key points were
calculated. Accordingly, the x–y coordinates of the key points
nos 5, 10 of the piston and 1, 4 of the cylinder are (3.949 975,
37.49), (3.949 975, 10.28) and (3.950 650, 37.49), (3.950 650,
10.28) respectively. These points are summarized in table 2.
The engagement length is 27.21 mm, which is the difference
between the x coordinates of key point nos 5 and 10 or 1
and 4.

The meshed figure of piston–cylinder assembly with smart
size 4 is shown in figure 3(a) and its zoomed view is shown in
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Table 2. The other major x–y coordinates of the NPL-8A
piston–cylinder assembly estimated as per the dimensions given in
table 1.

Key points x (mm) y (mm)

Cylinder
1 3.9506 37.49
2 8.5 37.49
3 8.5 10.28
4 3.9506 10.28

Piston
5 3.949 975 37.49
6 3.949 975 47.77
7 0 47.77
8 0 0
9 3.949 975 0

10 3.949 975 10.28

figure 3(b). As can be seen from the figures, for the estimation
of strains and distortions along the engagement length where
the applied pressure component acts, the concentration of
nodes is much larger. After meshing, there was a total of
578 nodes created along the engagement length of 27.21 mm
and a total number of 6925 (8 node) quadrilateral elements
in the piston–cylinder assembly. After creating the areas
determined by the main key points, we have demarcated
constant pressure on lines 8–9, 9–10 and 3–4. A linearly
varying pressure is applied along the engagement length (lines
5–10 and 1–4 of the piston and cylinder respectively). The
FEM calculations were carried out for pressures of 1 MPa,
1.5 MPa, 2 MPa, 2.5 MPa, 3 MPa, 3.5 MPa, 4 MPa, 4.5 MPa,
5 MPa, 5.5 MPa, 6 MPa, 6.5 MPa, 7 MPa, 7.5 MPa, and
8 MPa. Lines 1–2 of the cylinder and 6–7 of the piston have
been constrained to y-direction to restrict the movement of
piston–cylinder assembly [14].

For comparison purposes, the calculations were repeated
for mesh sizes 3 and 5. In the former case 771 nodes were
created along the engagement length, while for the latter case
357 nodes were created.

5. Elastic distortion theory

For simple piston–cylinder geometry the effective area under
pressure is given by equation (3). As already mentioned, the
NPLI-8A, with pressure range 8 MPa pneumatic pressure unit
with a nominal effective area of 4.902 445 586 × 10−5 m2 and
piston–cylinder made of tungsten carbide operating in free
deformation mode (FDM) was selected as the object for our
calculations.

5.1. Calculation details

In the present work, Ap as a function of pressure was calculated
using two approaches, theoretical and simulated. Further,
the distortion coefficient and the zero pressure effective
area were also calculated. Theoretical calculations were
carried out using Dadson’s equations [4] and Johnson/Newhall
equations [15], and the simulations were carried out using
the commercially available ANSYS software along with
Dadson’s equations. The results of both the calculations were

(a) (b)

Figure 3. Meshed figure of NPL-8A pc assembly showing (a)
deformed shape of the piston–cylinder assembly, (b) zoomed
meshed figure of the engagement length.

further compared to each other as well as the results of our
experimental cross-floating.

In both the calculations, Ap can be calculated using
Dadson’s theory [4] and is derived as

Ap=πr2
po

[
1 +

ho

rpo

− 1

rpo
(P1 − P2)

×
∫ l

0

[
{u(x) + U(x)} dP

dx

]
dx

]
, (4)

where P1 is the applied pressure and P2 is the pressure at the
top of the engagement length, u(x) is the piston deviation, U(x)
is the cylinder deviation, ho is the initial clearance between
piston–cylinder unit and rpo

is the undistorted radius of the
piston [16].

Figure 4 shows a view of piston–cylinder clearance; with
indication of radial changes between the piston and cylinder
in their engagement length (defined as the coupling length
of piston and cylinder between x = 0 and x = l). Under
absolute conditions, P2 = Po and in gauge condition P2 =
Patm. Appropriate diameter irregularities are emphasized and
reference is made to the radius.

For an undeformed piston–cylinder unit or in the case of
perfect geometry, i.e. uniform clearance or constant h and u =
U = 0, i.e. no piston or cylinder deviation, the effective area Ao

is exactly the arithmetic mean between the areas of the piston
and cylinder. From equation (4)

Ao = πr2
po

(
1 +

ho

rpo

)
. (5)

Also Ao = πr2
p0 + πr2

c0

2
= πr2

po + π(rpo + ho)
2

2
(6)
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Figure 4. Schematic of piston–cylinder unit with indication of
radial changes between the piston and the cylinder in their
engagement length (defined as the coupling length of piston and
cylinder between x = 0 and x = l). Absolute condition: p2 = po.
Gauge condition: p2 = patm.

where rco
= rpo

+ ho is the initial inner radius of the cylinder.
By performing simple mathematical calculation under the
condition that the initial clearance ho�1, it can be seen that
equations (5) and (6) are the same.

Although the pressure transmitting medium in our case
is nitrogen gas, however, since the gap is lubricated by oil,
the solution of the Navier–Stokes equation and the equation of
continuity give the relation between the pressure distribution
along the gap length, the gap profile h(x) and the properties of
the liquid and is given as [17]

P(x) = P1 + K

∫ x

0

η(P )

ρ(P )

1

h3(x)
dx, (7)

where P denotes the initial pressure. Since the density,
viscosity and K depend upon P(x), the pressure distribution
in the gap profile is calculated using Navier–Stokes equation.

At ambient P(x) = P2, i.e. atmospheric pressure; hence

P2 = P1 + K

∫ l

0

η(P )

ρ(P )

1

h3(x)
dx

and

K = −(P1 − P2)

/ ∫ l

0

η(P )

ρ(P )

1

h3(x)
dx. (8)

Further, since di-ethyl-hexyl-sebacate oil is used as lubricating
oil in the clearance between the piston and the cylinder, the
density ρ and the dynamic viscosity η, dependent on pressure
(in MPa) at 20 ◦C, can be described by the following equations
[18]:

ρ = 912.6657 + 0.752P − 1.645 × 10−3 · P 2

− 1.456 × 10−6 · P 3 (kg m−3)

and

η = 0.021 554(1 + 1.9004 × 10−3 · P)8.8101 (Pa s).

In the first iteration, the pressure in the gap was taken to
be linearly changing from P1 to ambient and the distortion

calculated. For this pressure distribution, the coefficient
K was established with equation (8). Subsequently, using
equation (7) again, a new pressure distribution was calculated
and a new K determined. In this way the FEM calculations
were iterated with each of the revised profiles and the process
was continued till convergence in the pressure distribution was
achieved.

The theoretical estimations have been carried out using
the following calculations:

For theoretical estimations, the distortions in piston
and cylinder have been estimated using the corresponding
distortion terms from the Johnson–Newhall equation. For
a simple piston–cylinder unit, Johnson and Newhall as well as
Tsiklis [15, 19], demonstrated the distortion coefficient under
conditions of no end loading or no axial loading, and a constant
pressure profile assumed as P1/2 is given as

λ = 3υp − 1

2Ep

+
1

2Ec

[
R2

c + r2
co

R2
c − r2

co

+ υc

]
, (9)

where the first term is the contribution to the distortion of the
piston and the second to that of the cylinder. In equation (9),
υp and υc are the values of Poisson’s ratio, Rc is the outer
radius of the cylinder and rco

is the inner radius of the cylinder,
Ep and Ec are Young’s modulus of elasticity of piston and
cylinder respectively. For the theoretical calculation of piston
and cylinder deviation and hence the clearance, we have used
equations (3) and (9) in the following manner [20]:

h(x) = ho + U(x) − u(x) = rc − rp. (10)

Assuming that equation (9) is valid for local axial variations
in radial pressure loading, the piston’s deviation is given as
the difference in the initial radius of the piston and the radius
of the piston after deviation. Using equations (3) and (9), we
obtain

u(x) = rp − rpo
= rpo

{[
1 +

(
3υp − 1

2Ep

)
P(x)

]1/2

− 1

}
.

(11)

Similarly for the cylinder, its deviation is given as the
difference in the radius of the cylinder after deviation and
the initial radius of the cylinder:

U(x) = rc − rco

= rco

⎡
⎣

{
1 +

1

2Ec

(
R2

c + r2
co

R2
c − r2

co

+ νc

)
P(x)

}1/2

− 1

⎤
⎦ . (12)

Hence, using P(x) from equation (7), u(x), and U(x) have been
estimated and we have calculated Ap for all applied pressures
(1–8 MPa) using equation (4) for theoretical calculations.

In simulation calculations we have calculated Ap using
equation (4) again and for this we have used the data of
elastic-strain obtained after FEM analysis using ANSYS. As
mentioned earlier, for the estimation of strain a linear pressure
variation along the engagement length has been initially
assumed, and the obtained distortion data and gap profile are
used in the Navier–Stokes equation and the results iterated till
convergence is achieved. Consequently the dp/dx is calculated
using Navier–Stokes equation. From the converged values
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Figure 5. The experimentally obtained cross-float data of effective
area variation as a function of pressure.

of strain, u(x) and U(x) have been estimated. Ap has been
estimated from equation (4) using the value of dp/dx calculated
from equation (7). These results have been used to obtain Ap as
a function of pressure and the calculated results are compared
with the actual experimentally obtained values.

6. Results and discussion

6.1. Experimental results

Figure 5 shows the variation of experimentally obtained
effective area with pressure up to 4 MPa. The obtained data
were subjected to linear regression and the equation obtained
yields

Ap = 4.902 4467 × 10−5 + 1.140 9144 × 10−10 P1. (13)

From the above fitting equation, the zero pressure effective
area A0 and the distortion coefficient were calculated and
found to be 4.902 4467 × 10−6 m2 at 20 ◦C and 2.327 ×
10−6 MPa−1 respectively. The uncertainties in the effective
area and the distortion coefficient have been estimated to be
3.363 67 × 10−11 and 2.46 × 10−7 respectively. The relative
expanded uncertainty in pressure measurement estimated as
per ISO and NABL guidelines has been estimated as 26 ×
10−6 at k = 2.

6.2. Simulation and theoretical calculations

As mentioned earlier, the pressure distribution along the
engagement length of piston and cylinder has been calculated
using Navier–Stokes equation. The obtained pressure profiles
for a few studied pressures are plotted in figure 6. The obtained
profiles are found to be almost linear in nature all along the
engagement length for each of the pressures studied. The
pressure distribution is a direct reflection of the fact that at the
top of the clearance the pressure falls to atmospheric pressure
while the designated pressure is applied at the origin or the
base of the piston.

For the simulation using FEM, the full view of the
deformed portion of piston–cylinder assembly as simulated
in FDM at a pressure of 8 MPa has already been shown in
figure 3(a), and the zoomed portion of the same is shown

Engagement length Vs Pressure
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Figure 6. A representative depiction of the applied pressure profile
over the engagement length at a few studied pressures.

in figure 3(b). The contour plot of the pc assembly for
FDM is shown in figure 7. It is seen that, as a result
of pressure distribution, a gap profile is created within the
engagement length, the magnitude of which is a function of
the applied pressure. The load on the piston and the cylinder
creates a force acting along the x-axis which leads to a local
longitudinal compression and, consequently, to a local cross-
expansion of the cylinder. This was confirmed by calculations
performed both in the presence and absence of the load on
the cylinder. Also the top of the cylinder is kept constrained
which is a necessary assumption for simulation [13]. The
deformed assembly shows an increased gap at the bottom of
the assembly. This gap was again found to be dependent
upon the pressure applied and increases linearly with increase
in applied pressure. The representative gap width variations
obtained from FEM analysis are depicted in figure 8 for a few
studied pressures. The gap width at the bottom of the piston is
typically about 0.691 μm at 1 MPa and about 0.803 μm at a
pressure of 8 MPa. This gap is seen to decrease at the top of the
piston due to linear decrease in pressure as already discussed.
Further, as the applied pressure increases, the gap width at
the top of the engagement length also increases slightly as
compared to the gap at ambient.

The radial distortion of the piston and the cylinder as
a function of normalized engagement length is shown in
figure 9 for pressures 8 MPa and 1 MPa for piston and cylinder.
The graph shows the relative distortion in the piston and
cylinder at 1 and 8 MPa with respect to the radial clearance at
zero pressure. As already observed in figure 8, the distortion
is maximum at the bottom of the piston and cylinder where the
maximum pressures act while it decreases toward the top of
the piston–cylinder assembly. It is significant to note that the
cylinder undergoes higher distortion compared to the piston.
Also, although the cylinder distorts predominantly in one
direction, the distortion in the piston reverses slightly toward
the top of the engagement length.

In comparison, the gap width as well as the radial
distortion as calculated using Dadson’s and Newhall’s
equations, shown in figures 10 and 11 respectively, shows
a few variations. The gap width again shows an increase
at the bottom with increase in applied pressure although the
magnitude of the gap is seen to be lower as compared to the
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Figure 7. Image of the distorted piston–cylinder assembly after ANSYS simulation in FDM.
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Figure 8. Gap profile of the pc assembly as obtained from FEM
simulation.

estimation from FEM analysis. It may be noted that the slope
in the gap variation increases with increase in pressure and
the radial distortion shows distortion in one direction only
for all applied pressures. In addition, the gap width at the
top of the engagement length does not show an appreciable
variation with increase in applied pressure as was observed in
the case of FEM calculations. Likewise the magnitude of the
radial distortion is also comparatively lower in this case and
the distortion is unidirectional for piston as well as cylinder.

The comparison between theoretical and simulated Ap,
calculated using equation (4), as well as experimentally
obtained Ap using the cross-floating technique, is shown in
figure 12. The experimental points were calculated from the
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Figure 9. Radial distortion of the piston and cylinder at pressures of
1 and 8 MPa as obtained from FEM simulation.

regression equation (13) obtained from fitting the experimental
data and calculating Ap as a function of pressure up to 8 MPa.
The calculated experimental points have been extrapolated to
8 MPa for comparison purposes. For reference purposes, the
average effective area obtained experimentally at each pressure
point, up to a pressure of 4 MPa, is also plotted alongside. It
may be pointed out here that we have recently established our
CMCs up to 40 MPa gas pressures with our traceability starting
from UIM with very low pressures [21]. The pistons with
various pressure ranges have been calibrated in overlapping
pressure ranges and the traceability extended to the piston
with next higher pressures. Likewise, in the present case, the
fitted linear equation has been used to generate points up to
8 MPa for comparison purposes only.
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Figure 10. Gap profile of the piston–cylinder assembly as obtained
from theoretical estimations.

-1.0E-08

-5.0E-09

0.0E+00

5.0E-09

1.0E-08

1.5E-08

2.0E-08

2.5E-08

0 0.2 0.4 0.6 0.8 1 1.2

Normalized engagement length

R
a

d
ia

l 
d

is
to

rt
io

n
 (

m
)

1 MPa Piston

1 MPa Cyl
8 MPa Piston
8 MPa Cyl
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from theoretical estimations.
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Figure 12. A comparative graph of Ap versus pressure between
experimental data and simulated as well as theoretical estimations.

As expected, the Ap values are seen to be increasing as the
pressure is increased both in theoretical and simulated results.
As compared to our actual experimentally obtained values, the
Ap values using FEM calculations show better agreement and
agree within about 3.5 × 10−6 at 4 MPa and 7 × 10−6 at a
pressure of 8 MPa. The theoretical estimation is found to be
in worse agreement with the experimental results and varied
by about 17 × 10−6 at 8 MPa.

The results thus obtained were used to estimate the
distortion coefficient λ, and the obtained variation of λ with
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Figure 13. Comparative graph of distortion coefficient variation as
a function of pressure obtained from various calculation approaches.

pressure is shown in figure 13. Once again the trend of the
differences obtained between various approaches to estimation
are reflected in a similar manner. The λ values calculated using
pressure profile in FEM calculations show the values closest
to the experimentally obtained values, while the theoretical
estimations show values lower by an order. As the pressure
increases from 1 to 8 MPa, the distortion co-efficient is seen to
remain almost constant with a slightly higher value toward the
lower pressure end. Similar observations have been reported
by Buonanno et al [22]. For FEM calculations, λ varies
from a value of 1.56 × 10−6 MPa−1 at 1 MPa to 1.49 ×
10−6 MPa−1 at a pressure of 8 MPa. The experimentally
obtained distortion coefficient from regression analysis, has
been found to be 2.327 × 10−6 MPa−1. Further, the distortion
coefficient was also calculated directly using equation (9) and
is also plotted in figure 13. These values do not involve the
pressure profile and hence are plotted as a constant value. It is
clear that these values are close to the values estimated using
FEM and show significant difference from the theoretically
estimated values. Hence the FEM simulated results are found
to be in closer agreement with the expected results.

Further, as mentioned earlier, the FEM simulations were
repeated with smaller as well as larger mesh size of the
modeled finite element structure. As already pointed out, the
simulations were repeated for mesh sizes 3 and 5 apart from
the size 4 results mentioned above. The results obtained are
also mentioned in table 3. From table 3, it can be clearly seen
that there is absolutely no change in the values obtained for A0,
although a negligible change in average distortion coefficient
value is seen. Likewise, the simulations were also done for an
assumed linear pressure variation in the gap, and total neglect
of the presence of lubricating oil in the gap, and once again,
the results were found to be exactly the same.

In a nutshell, from the results obtained the following
points are made clear.

(1) The consequence of almost linear pressure variation
across the engagement length leads to a gap width
and radial distortion profile which qualitatively differs
from the theoretically estimated profile at the top of
the engagement length. The theoretical profile shows
continuous increase in the gap at the bottom of the piston
with increase in pressure as compared to the gap at
ambient, and the gap at the top does not show a significant

8
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Table 3. A comparative summary of the results obtained from various calculations.

Experimentally Dimension FEM mesh FEM mesh FEM mesh Theoretical
Parameter obtained measurements size 4 size 3 size 5 calculations

A0 (×10−6 m2) 4.902 4467 4.902 445 586 4.902 4460 4.902 4460 4.902 4460 4.902 4457
Agreement with experimental A0 – 0.23 × 10−6 0.14 × 10−6 0.14 × 10−6 0.14 × 10−6 0.20 × 10−6

λ (×10−6 MPa−1) 2.327 – (avg.) 1.5036 (avg.) 1.5040 (avg.) 1.5049 (avg.) 0.291

change. However, the FEM estimated radial distortion
and gap profiles show that there is a significant increase in
the gap at the top of the engagement length with increase
in pressure. This may be a manifestation of the fact that
in FEM calculations, the magnitude of the distortion is
higher for both the piston and the cylinder as compared to
the theoretical results and hence the observation.

(2) Owing to larger distortion, the distortion coefficient is
found to be higher in FEM results, which actually shows
better agreement with the experimentally obtained values.
It may be added here that the experimentally obtained
distortion coefficient also includes a reflection of the λ

value of the reference standard and hence may show
higher or lower values depending upon the λ value of
the reference standard.

(3) The u(x) and U(x) values in theoretical estimations have
been calculated using the λ values, which in turn have
been calculated from the material properties of the piston
and cylinder. However, it has been reported that for the
use of equation (9) at pressures higher than 0.5 MPa,
the uncertainties in the estimations of λ can be of the
order of 100–200% [1], which in turn would affect the
estimation of u(x) and U(x) and ultimately Ap and the
distortion profiles. This explains the large deviation of
the theoretically estimated results from the experimental
as well as FEM results. In fact it has been reported that
for pressures higher than 0.5 MPa, more reliable values
for the distortion coefficient would be achieved by using
comparison and experimental measurements as well as
similarity method [1].

(4) Another factor affecting the difference obtained for λ may
include the assumptions under which equation (9) has
been proposed. The equation is valid for no end-loading
of the cylinder and a constant mean pressure value of
P1/2 in the clearance. Therefore, the λ values are found
to be lower in the case of theoretical calculations, and
hence the corresponding u(x) and U(x) using equations
(11) and (12) respectively are lower as already depicted
by the radial distortion profile in figure 11. Therefore, the
resulting values obtained for Ap are found to be lower as
compared to the simulated and experimental results. This
could be one of the reasons for the difference observed in
FEM and theoretical estimations despite using the same
properties of the materials in both approaches.

(5) Although the experimentally fitted values are extrapolated
up to a pressure of 8 MPa where they show an agreement
of 7 × 10−6 with the FEM results, at the actual highest
experimental pressure of 4 MPa, the agreement is found

to be 3.5 × 10−6 which is much better compared to the
extrapolated data at 8 MPa.

(6) The differences in the experimental and simulated results
could also come about due to the starting values
used in FEM, obtained from dimension measurements.
As mentioned earlier, the uncertainty in dimension
measurements is approximately ±0.5 μm at k = 2 for
the values of the radii used. The estimated uncertainty is
close to the initial gap of 0.675 μm. Hence the actual gap
may be higher or lower than the value used and hence lead
to the difference obtained in experimental and simulated
results. However, since the agreement is within 3.5 ×
10−6 at a pressure of 4 MPa, the results are well within
the uncertainty of our own experimental results.

Further simulations with variation in gap width as well as
the shape of the piston–cylinder assembly are under progress.

7. Conclusions

A numerical methodology based on FEM has been used to
study the gap profile, radial distortion, pressure distortion
coefficient and effective area in FDM for a pneumatic 8 MPa
piston–cylinder assembly. The effective area and pressure
distortion coefficients were also calculated theoretically using
Dadson’s model and compared with the simulated and the
experimentally obtained results. The simulation calculations
were carried out for gauge pressure ranging from 1 to 8 MPa
using the Finite Element software ANSYS 9.0. The effective
area variation with pressure was found to agree within 7 ×
10−6 at a pressure of 8 MPa with the experimentally obtained
values while the theoretical calculations vary by about 17 ×
10−6.

The gap profile and radial clearance profiles show
increased gap and therefore strain, at the bottom of the
piston–cylinder assembly which decreases toward the top due
to pressure distribution in the gap profile. The distortion
coefficient from simulation studies shows better agreement
with experiment compared to the theoretically obtained values.
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