Estimates of emission and deposition of reactive nitrogenous species for India

C. Sharma^{1,*}, M. K. Tiwari¹ and H. Pathak²

¹National Physical Laboratory, New Delhi 110 012, India
²International Rice Research Institute–India, NASC Complex, Pusa, New Delhi 110 012, India

Anthropogenic activities are responsible for the enhanced emission of reactive nitrogenous species like nitrous oxide (N_2O) , oxides of nitrogen (NO_x) and ammonia (NH₃) into the atmosphere from the biosphere. This article reviews the available estimates of emissions of these reactive nitrogenous species for India. In addition, it reviews the estimates of depositional fluxes of ammonia and nitrate through dry and wet precipitation over India. Agriculture soils are the largest emitter of N₂O in India due to increasing application of nitrogenous fertilizers in agriculture fields. The contributions of other sources like biomass burning and energy activities are rather small in the overall N₂O emissions in India. However, total contribution of Indian agriculture to the global N₂O emissions is merely 2.7%. On the other hand, energy activities are a major source of NO_r emissions in India, which include both mobile and stationary combustion processes. The agriculture sector has a small contribution in the total NO_x emissions in India. The ammonia emissions are primarily contributed from the agriculture sector in India. The depositional fluxes of ammonia have so far been reported to be higher for sub-urban areas while the nitrate depositional fluxes have been reported to be higher over rural areas, which can have significant impacts on the agriculture productivity. However, the present article reveals large uncertainties in all these estimates which need to be addressed through systematic nation-wide studies.

Keywords: Depositional fluxes, emission, greenhouse gas, inventories, nitrogeneous species.

THE natural biogeochemical cycle of nitrogen (N) in the post-industrial era has been greatly influenced by the anthropogenic activities through enhanced emission of reactive nitrogenous species from various sectors like energy, industries, agriculture and waste. A major consequence of this human-driven change in the global nitrogen cycle is the increased emission of N-based trace gases, such as nitrous oxide (N₂O) and NO_x (NO + NO₂) and ammonia (NH₃) that has impacted regional and global atmospheric chemistry¹. Although the diatomic nitrogen (N₂) constitutes the major portion of atmospheric nitrogen (78%), the role of other nitrogenous species in the atmosphere, present in trace quantities, is important in the modification of the earth's radiation balance and atmospheric chemistry. Nitrous oxide is effective at trapping heat in the atmosphere and triggers reactions leading to destruction of ozone in the stratosphere. Nitrogen oxides (NO_x) play an important role in the chemistry of the lower atmosphere by catalysing the photochemical formation of ground-level ozone, causing detrimental effects with regard to human health and crop productivity². Nitrous oxide is also important in the photochemical formation of NO_x, a component of acid rain³. Ammonia is the major gaseous base in the atmosphere and serves to neutralize about 30% of the hydrogen ions in the atmosphere⁴.

Over evolutionary history, only a limited number of species of bacteria and archaea have evolved the ability to convert N₂ to reactive nitrogen. Reactive nitrogen (N_r) is usually referred to all the nitrogen species that are biologically active, photo-chemically reactive and radiatively important in the atmosphere and biosphere of the earth⁵. Thus, N_r includes reduced inorganic forms of N (NH_3, NH_4^+) , oxidized inorganic forms (NO_r, HNO_2, N_2O_1) and NO_3^-) and organic compounds (urea, amines, proteins and nucleic acids). The impact of Nr on the environment can occur in series. Referred to as the N-cascade⁶, one atom of N can, in sequence, (i) increase tropospheric O_3 (human health impact), (ii) increase fine particulate matter (visibility impact), (iii) alter forest productivity, (iv) acidify surface waters (biodiversity loss), (v) increase coastal ecosystem productivity, (vi) promote coastal eutrophication and (vii) increase greenhouse effect in the atmosphere (N₂O production).

Among the trace nitrogenous species, the nitrous oxide (N_2O) , being an important greenhouse gas, has the largest concentration in the atmosphere and this species also has a strong bearing on the earth's radiation balance. According to the recent Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report⁷, the global N₂O concentrations have increased from about 270 ppb during the pre-industrial period to about 319 ppb in 2005. The growth rate of N₂O has been reported to be approximately constant since 1980, but more than a third of the total N₂O emission has been attributed to anthropogenic activities, including agriculture, which is the largest contributing sector.

^{*}For correspondence. (e-mail: csharma@mail.nplindia.ernet.in)

The other important trace N-species in the atmosphere are oxides of nitrogen (NO_x) and ammonia (NH_3) which are highly reactive and thus have short atmospheric residence time, unlike N₂O which has a longer atmospheric residence time, but they also play an important role in the chemistry of the atmosphere. NH₃ in the atmosphere acts as a neutralizing agent for the acidic aerosols, besides directly affecting the vegetation and forming nitrate and N_2O . Similarly, NO_x in the atmosphere acts as a precursor of ozone (O₃) and also forms nitric acid (HNO₃), thus contributing not only to the acidity of the atmosphere, but also indirectly contributing to greenhouse effects. The ammonium and nitrate species formed during the atmospheric chemical processes are eventually returned back to the earth surface in the form of aerosols or ions through wet and dry depositions.

The IPCC has developed methodologies for countries to estimate national greenhouse gas emissions (GHG) from different sectors, e.g. nitrous oxide (N₂O) emission from agriculture. Each agricultural activity has a magnitude and emission factor and their product is summed over all included activities to generate a national total⁸. Nitrogen fertilization of agricultural soils is responsible for emission of the greatest amount of N₂O of all the anthropogenic sources. Besides mineral N fertilizers, compost and green manure also contribute towards N₂O emission. In order to support the global food production, N fertilizer use is likely to increase in future⁹ and as a result N₂O emissions are also expected to go up.

The present article reviews the estimates for emission of different trace nitrogen species (viz. N_2O , NO_x and NH_3) and information on deposition fluxes of nitrogenous species reported so far for India.

Nitrous oxide emission

 N_2O is emitted into the atmosphere from both natural (like waterbodies and soils) as well as from anthropogenic ac-

tivities like agriculture, transport, industries and wastemanagement practices. Measurement of N2O emission from Indian agriculture started only in the 1990s. The closed-chamber technique¹⁰ was employed for these measurements. Results of N2O emission from agricultural soils based on actual field measurements are summarized in Table 1. These experiments reveal average N₂O-N emission of 0.0025 and 0.0055 kg kg⁻¹ N applied from rice and wheat fields respectively. Results indicate that N2O emission is more in aerated crops such as wheat than in rice, which is grown in flooded anaerobic soil condition. As rice and wheat are the major crops in India, covering about 45 and 27 mha of cultivated area respectively, and consume maximum amounts of N fertilizer, an average N₂O emission can be taken as 0.004 kg kg⁻¹ N applied. Earlier, some attempts have been made to estimate N₂O emission from Indian soils for different time periods (Table 2). For example, it is estimated¹¹ that 199– 279 Gg N_2 O-N yr⁻¹ is emitted from agricultural soils in India. In another study¹², N₂O-N emission from Indian agricultural soils was estimated to be 240 Gg yr⁻¹. Garg et al.¹³ using the IPCC methodology and emission coefficients¹⁴ have given an estimate of 170 Gg N₂O-N from Indian soils. The estimate included emission from biological N fixation, N fertilizer and indirect emission from soils. These estimates do not match, as adequate coverage of all sources of N2O emission has not been made and there were too many assumptions without the actual measurement data. Recently¹⁵, it has been estimated that 79.94 Gg N₂O-N is emitted for the base year 1994-95 from Indian agricultural soils using some measured emission coefficients (Table 3). However, using the IPCC default emission coefficients, the emission was 145 Gg N₂O N yr⁻¹. Uttar Pradesh (including Uttarakhand) emitted the highest amount of N₂O-N (15.53 Gg) followed by Andhra Pradesh (9.50 Gg) and Maharashtra (7.50 Gg). Larger area under cultivation, higher use of N fertilizer and greater animal population are responsible for higher emission in these states. Estimates of N₂O-N emission in

	6						
Crop	Fertilizer [†]	N dose (kg ha ⁻¹)	Irrigation [‡]	Duration (day)	N ₂ O emission (kg N ha ⁻¹)	Emission coefficient (kg N ₂ O-N kg ⁻¹ N)	Reference
Rice	Urea	140	CF	70	0.06	0.0004	47
Rice	Urea	140	IF	90	0.16	0.0011	48
Rice	AS	140	IF	90	0.23	0.0016	48
Rice	Urea	120	SS	105	0.17	0.0014	49
Rice	AS	120	SS	105	0.15	0.0012	49
Rice	PN	120	SS	105	0.19	0.0016	49
Rice	Urea	120	SS	90	0.74	0.0050	50
Rice	Urea	120	IF	90	0.93	0.0050	50
Wheat	Urea	140	3 irrig.	125	0.71	0.0052	50
Wheat	Urea	120	5 irrig.	125	0.77	0.0052	50
Wheat	Urea	120	5 irrig.	95	0.55	0.0045	51

[†]AS, Ammonium sulphate; PN, Potassium nitrate.

[‡]CF, Continuously flooded; IF, Intermittently flooded; SS, Saturated soil.

Source	Estimate (Gg N_2 O-N yr ⁻¹)	Domain	Methodology used	
Parashar et al.11	199–279	India	Extrapolated from some measurements all over India	
ALGAS ¹²	248	India	Extrapolated from some measurements all over India	
Garg et al.13	170	India	IPCC methodology and IPCC emission coefficients	
Bhatia et al.15	80	India	IPCC methodology and measured emission coefficients	
Bhatia et al. ¹⁵	145	India	IPCC methodology and IPCC emission coefficients	
INC ¹⁶	146	India	IPCC methodology and IPCC emission coefficients	
Pathak et al.18	50	Indian rice fields	DNDC simulation model	

 Table 2.
 Estimates of N₂O emission from Indian agriculture

Table 3.	Emission	of nitrous	oxide from	agricultural
soils ir	different	states of In	ndia during	1994–95

State	N ₂ O emission (Gg)
Andaman and Nicobar Islands	0.02
Andhra Pradesh	9.50
Arunachal Pradesh	0.01
Assam	0.21
Bihar	3.90
Chandigarh	0.03
Dadra and Nagar Haveli	0.01
Delhi	0.10
Goa, Daman and Diu	0.03
Gujarat	4.49
Haryana	4.38
Himachal Pradesh	0.26
Jammu and Kashmir	0.32
Karnataka	4.35
Kerala	0.71
Madhya Pradesh	6.78
Maharashtra	7.50
Manipur	0.06
Meghalaya	0.02
Mizoram	0.00
Nagaland	0.53
Orissa	1.34
Puducherry	0.09
Punjab	7.69
Rajasthan	4.31
Sikkim	0.01
Tamil Nadu	4.36
Tripura	0.04
Uttar Pradesh	15.53
West Bengal	3.38
Total	79.94

India from 1980–81 onwards ranged from 32.84 Gg (1980–81) to 93.82 Gg (2000–01) per year. There was a linear increase in emission due to increased area under different crops, higher use of N fertilizers and also increase in animal population. It was observed that inorganic fertilizer is the major source (72%) of nitrous oxide. Other sources like crop residues and manure contribute 11 and 3% respectively, to the total emission¹⁵.

India's Initial National Communication to UNFCCC¹⁶ has reported that the total N_2O emission from the country was 178 Gg for the year 1994, which is only 4% of the

total GHG emission from the country. The agriculture sector is the largest contributor to it, which accounts for 85% of this emission. The direct emission from soils due to the use of nitrogenous fertilizers is the major source of N₂O emission contributing about 146 Gg for the year 1994, which is about 81% of the total N₂O in terms of CO₂ equivalent. The other small sources of N₂O emission in agriculture sector are manure management and the agriculture crop residue burning¹⁶, which have been estimated to contribute about 1 and 4 Gg respectively, for the year 1994.

Simulation models are efficient tools to quantify the effects of climate, soil, crop and agriculture management on emission of nitrous oxide from the soil. This can reduce the need for expensive and time-consuming field experimentation and can be used to extrapolate the results of research to other larger areas, where similar conditions are observed. Recently, attempts have been made to calculate detailed regional N₂O emission using simulation models¹⁷⁻¹⁹. A recent study¹⁸ used the simulation modelling approach for estimation of nitrous oxide emission from rice fields in India, using a newly compiled soil/climate/ land-use database. Continuous flooding of rice fields (21 mha) resulted in annual net emission of 40-50 Gg of N2O-N. Intermittent flooding of rice fields increased emission to 50-60 Gg N₂O-N. Emission of N₂O-N was higher from the southeastern (Andhra Pradesh) and northern (Punjab) states of the country. The high emission was due to larger area under rice and higher use of N fertilizers. Moreover, in northern India, rice is generally grown under intermittent drying conditions and considerable amounts of nitrous oxide emission could occur because of alternate wetting and drying of rice fields, resulting in the repetition of nitrification and denitrification processes. In terms of global nitrous oxide emissions, the contribution of Indian agriculture is miniscule (Table 4). Estimates have shown that the Indian agricultural soils are contributing only 0.88% of the world's nitrous oxide emission and nitrous oxide from Indian agricultural soils is responsible for only about 0.1% of the global warming caused by the world's nitrous oxide emission.

 N_2O is also produced during the fuel combustion process due to the reaction between nitrogen and oxygen in both mobile as well as stationary combustion processes. The quantities of N_2O emission during combustion depend upon several factors like fuel type, nitrogen content of fuel, combustion type, operating conditions, technologies, etc. For India, the NATCOM report¹⁶ has estimated a total of about 11.4 Gg N₂O emissions from the energy sector for the year 1994. The energy sector includes subsectors like energy and transformation industries contributing 4.9 Gg N₂O, industry (mainly nitric acid production) contributing 2.8 Gg N₂O, transport contributing 0.7 Gg N₂O, commercial–institutional contributing 0.2 Gg N₂O, residential contributing 0.4 Gg N₂O, other sectors contributing 2.0 Gg N₂O. The waste sector has been estimated to contribute about 7 Gg N₂O in the year 1994.

Estimates²⁰ using the IPCC methodologies have yielded the total N₂O emission from India for the years 1985, 1990, 1995, 2000 and 2005 as 134, 158, 185, 217 and 253 Gg respectively, which has yielded a compounded annual growth rate (CAGR) of 3.2% for the period 1985-2005. This observed CAGR essentially follows a similar CAGR of 3.2% observed for the N₂O emission due to synthetic fertilizer use during the corresponding period²⁰, because of its largest contribution in the total national N₂O emission. For other sectors like field burning of agriculture residue, indirect soil emission, manure management, fossil-fuel combustion, industrial processes and waste, the reported²⁰ CAGR values are 1.4, 2.9, 3.9, 4.9, 5.0 and 2.8 respectively, for the period 1985-2005. The observed higher CAGR for manure management, fossilfuel combustion and industrial processes reflects that in future these sectors may also become significant contributors in the national total emissions of N₂O.

Nitrogen oxide emission

The release of nitrogen oxides (NO_x) has been accelerated during the last few decades, primarily through the increase in fossil-fuel combustion²¹. The NO_x emissions are predominantly contributed by sources such as vehicular exhaust, coal combustion and biomass burning. The higher temperatures in the flame during combustion are generally responsible for the formation of NO_x, as it helps in breaking down the molecular nitrogen and oxygen of the air, that recombine to form NO_x, which includes both nitric oxide (NO) and nitrogen dioxide (NO₂). In addi-

 Table 4.
 Contribution of Indian agriculture towards global N2O emission

	$N_{2}Q$ emission (Tg) $N_{2}Q$ (% of world)			
Domain	N ₂ O emission (Tg)	N_2O (% of world)		
World*	8.96	100		
India*	0.26	2.8		
World agriculture [†]	3.5	39.1		
Indian agriculture*	0.24	2.7		
Indian agricultural soils [‡]	0.08	0.88		

Source: *ALGAS¹²; [†]IPCC¹⁴; [‡]Bhatia et al.¹⁵.

tion, the nitrogen content of the fuel also gets oxidized during the combustion and releases NO_x . Among the above-mentioned three sources, vehicular exhaust is the largest contributor of NO_x emission in India. Singh et al.²², using the default IPCC emission factors, have estimated that the Indian road transport sector contributed about 0.3 Tg NO_x emission in 1980, which has increased to 1.1 Tg in 2000. Diesel-powered vehicles have been estimated to be the dominant contributors and account for about 84% of the total NO_x emission for the road transport sector. This could possibly be due to higher consumption of diesel in freight and passenger (mass transport) transport vehicles, which are mostly powered by diesel engines only. The CAGR of these NO_x emissions have been estimated at about 8% for the period 1980-1990. However, for the period 1990-2000, CAGR has been estimated as about 6% only. This decrease in the growth rate during the last decade has been attributed to relatively lower increase in the consumption rate of diesel from 1997 onwards, though the absolute value of the consumption has increased four times between 1980 and the later period of 1990s. Other available estimates for NO_x emission from the Indian transport sector show wide variation due to the use of different emission factors. For example, a study²³ using a modelling approach to compute emission factors has estimated total NO emission from all vehicles in India for the year 1997 as 4.8 Tg. However, others²⁴ have estimated NO_x emission as 1.9 Tg for the year 2001-02. The reasons for such large variations in the emission estimates are due to the emission factors used in these estimates. In order to reduce such large uncertainties, development of country-specific emission factors for different activities is required.

In the thermal power plants, NO formation largely depends upon the excess air used during combustion and the gas temperature in the boiler. NO is formed by the oxidation of atmospheric nitrogen during combustion of the fuel. The contribution of nitrogen that is chemically bound within the fuel is small. A study²⁵ using the modelling approach has estimated average NO emission per unit of electricity as approximately 4.8 g/kWh. This compares to a US average 3.5 g/kWh for the year 1995. Total NO emission due to thermal power generation in India has been estimated by them as 5.3 Tg for the year 1997.

The 'field burning of agricultural residue' is established as an important sub-sector of the 'agriculture' sector in the IPCC methodology for national GHG inventory preparation⁸. Northern India is among the most productive regions for agriculture in Asia and post-harvest field burning of rice straw is common practice in the area. In these areas farmers normally resort to burning of left-over agriculture residue as a cost-effective post-harvest field management practice. The increasing use of combine harvesters in the region usually leaves behind a large quantity of straw in the field that is often subjected to burning²⁶. In a recent survey it was observed that 60 and

INDIAN AGRICULTURE,	ENVIRONMENT	AND	HEALTH

Location	Crop	Organic C (%)	pН	Texture [†]	N added (kg ha ⁻¹)	N source	Volatilization loss (kg ha ⁻¹)	Reference [‡]
New Delhi	Rice	0.48	7.7	SCL	120	Urea	10.1	52
New Delhi	Rice	0.48	7.7	SCL	120	USG	4.0	52
New Delhi	Wheat	0.41	8.2	L	100	Urea	8.0	53
Kalyani, WB	Rice	1.23	8.4	SiCL	90	Urea	15.6	54
Kalyani, WB	Rice	1.23	8.4	SiCL	90	Neem + urea	12.0	54
Kalyani, WB	Rice	1.23	8.4	SiCL	90	Urea + GM	7.2	54
Cuttack	Rice	0.70	6.0	SiL	90	Urea	2.9	55
Pantnagar	Rice	-	7.6	_	120	Urea	22.8	56
Pantnagar	Rice	_	7.6	_	120	USG	1.0	56

[†]SCL, Sandy clay loam; L, Loam; SiCL, Silty clay loam; SiL, Silty loam; S, Sandy; CL, Clay loam; USG, Urea super granule.

82% of rice straw produced in the northwestern states of Haryana and Punjab respectively, is burned in the field. Some estimates of NO_x emission from this source are available, like 0.1 Tg yr⁻¹ field burning of crop residue²⁷ for the year 1985 and 0.54 Tg yr⁻¹ from all types of biomass burning²⁸. Another study²⁹ has estimated 47.6 Gg of NO_x emission for the year 1989–90 and others³⁰ have reported 40 Gg of NO_x emission for the year residue. A recent study³¹ has estimated that the field burning of wheat residue is responsible for emission of 14 ± 9 , 33 ± 32 , 15 ± 14 and 11 ± 9 Gg of N₂O, NO_x, NO and NO₂, respectively, for the year 2000 in India.

NO_x emission from soils is primarily a result of NO production by the microbial oxidation of ammonium, the process known as nitrification³². NO production in the soils also occurs through microbial reduction of nitrate (denitrification). This reaction only occurs in watersaturated soils where little NO is released from the soil to the atmosphere³³. Davidson and Kingerlee³⁴ estimated that about 5 Tg of NO_x-N is emitted annually from cultivated soils globally, through an analysis of published NO_x flux measurements in agricultural fields. Estimates³⁵ exist that about 0.5% of fertilizer-N applied to agricultural fields was emitted to the atmosphere as NO. Others³⁶ observed that although field measurements are lacking, NO emission from paddy fields during the rice-growing season could be assumed to be non-negligible and a fertilizer-induced emission factor of 0.13% for NO from paddy fields as proposed³⁷ could be considered.

Ammonia emission

Agriculture is the major sector responsible for NH_3 emission. Application of fertilizers in the agriculture fields and the livestock population are mainly responsible for NH_3 emission. The emission estimates of NH_3 are highly uncertain in India, as no country-specific emission factor for NH_3 is available as yet. Estimates of ammonia emission from various land-use types and locations in India have been summarized in Table 5. The loss rates vary from 1 to 22.8 kg ha⁻¹ depending upon soil type, crop and fertilizer material. Some studies have shown leaching loss of N from soils in the Indo-Gangetic-Plains (IGP) as 10-15 kg N ha⁻¹, while ammonia volatilization loss is 20-30 kg N ha⁻¹ with application of 120 kg N ha⁻¹ in rice and wheat^{38,39}. In a study on the loss of N as NH₃ from the rice-wheat system of North India, volatilization losses ranged from 38.6 kg N ha⁻¹ in unfertilized soil to 69.0 kg N ha⁻¹ with urea plus DCD treatments have been reported⁴⁰. Daily emission of NH₃-N was as high as $0.45 \text{ kg N} \text{ha}^{-1} \text{d}^{-1}$ in rice and $0.5 \text{ kg N} \text{ha}^{-1} \text{d}^{-1}$ in wheat. Substitution of 50% urea-N by farmyard manure reduced NH₃-N emission by 10% in rice and wheat compared to urea-N alone. Studies¹¹ have estimated using proposed⁴¹ emission factors that fertilizer application was responsible for about 1.17 Tg NH₃ emission in India for 1993–94.

Among all the fertilizers, urea application is responsible for contribution of more than 90% of these emissions. Other types of fertilizers like ammonium sulphate, calcium ammonium sulphate, diammonium phosphate, ammonium phosphate, nitrophosphate and NPK, have been estimated to contribute only a small amount of NH3 emission. The reason for highest contribution from urea is not only because of its highest usage in Indian agriculture, but also due to the large emission factor for NH₃ emission (as per cent loss of N). However, none of these emission estimates has taken into account the organic manure applications in the agriculture fields in India so far. A recent study⁴² simulated N loss from rice-wheat cropping systems of the IGP through ammonia volatilization. Total loss of N was 16–62 kg N ha⁻¹ in the various states of the IGP. Average N loss was 30 kg N ha⁻¹, with average fertilizer application of 98 kg N ha⁻¹. Thus, about 30.4% of N applied through fertilizer and manure was lost from the system. Volatilization accounted for 15 kg ha⁻¹ loss of N. Ammonia volatilization was larger in Punjab and West Bengal because of a larger amount of N use through fertilizer and manure and also because of higher soil pH (Figure 1).

The livestock in India has been estimated to contribute about 1.43 Tg of NH_3 emission¹¹. Among these emissions, cattle have been estimated to have the largest con-

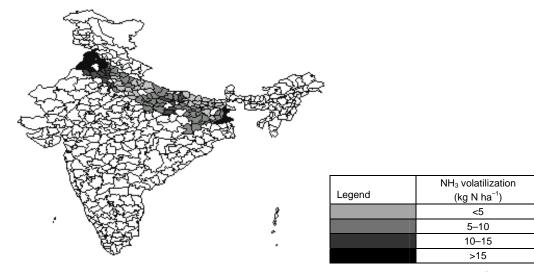


Figure 1. Annual loss of N through volatilization in the rice-wheat systems of the IGP (source Pathak et al.⁴²).

tribution amounting to 1.05 Tg, followed by buffaloes which have been estimated to contribute about 0.28 Tg NH₃. The other categories of livestock like pigs, poultry, horses and sheep have small contributions in the total national NH₃ emission. These emission estimates are again based on the emission factors proposed by Asman⁴¹, which have been developed using the feed intake ratios of West European cattle and therefore, may not truly represent Indian conditions, where the feed intake ratios are generally low.

Depositional fluxes of NH₄⁺ and NO₃⁻

Nitrogen species like NH_4^+ and NO_3^- present in the atmosphere due to direct emission or as resultant products of the atmospheric chemical process are normally removed from the atmosphere through wet and dry precipitations and brought back to the earth's surface. The dry and wet depositions constitute an important input to the soil and vegetation on the earth and, therefore, need to be quantified adequately to ascertain the total nitrogen cycle with more certainty. However, limited estimates of these species are available so far, especially in most of the developing countries, including India, which makes it almost impossible to accurately quantify the depositional fluxes. There is an increasing concern about the enhanced depositions of these nitrogenous species due to anthropogenic reasons, especially in regions like India and China, where the emission rates of nitrogen compounds are estimated to be increasing at a fast rate 43,44 .

A study on India⁴⁵ reviewed the precipitation-monitoring studies to synthesize regional patterns based on the available data from different monitoring stations in the country. This study indicates that the NH_4^+ median concentrations of about 9 μ eq l⁻¹ (range from 25 to 75 percentile = $4-16 \mu$ eq l⁻¹) are the lowest in the precipitation samples measured over rural areas in India and the concentration is about 14 μ eq l⁻¹ (range from 25 to 75 percentile = $11-18 \mu \text{ eq } l^{-1}$) in the samples collected over sub-urban areas. Precipitation in the urban areas showed highest NH₄⁺ median value concentration of 22 μ eq l⁻¹ (range from 25 to 75 percentile = $15-27 \mu \text{ eq } l^{-1}$), while precipitation samples collected over industrial areas in India showed NH_4^+ median value of $18 \mu \text{ eq } l^{-1}$ (range from 25 to 75 percentile = $11-37 \mu \text{ eq } l^{-1}$). For the NO₃ concentrations in the precipitation samples collected over rural, suburban, urban and industrial areas⁴⁵, median values of 22 (range from 25 to 75 percentile = $10-34 \mu \text{ eq } l^{-1}$), 11 (range from 25 to 75 percentile = $9-18 \mu \text{ eq } l^{-1}$), 28 (range from 25 to 75 percentile = $10-46 \mu \text{ eq } 1^{-1}$) and 21 μ eq l⁻¹ (range from 25 to 75 percentile = 12-28 μ eq l⁻¹) respectively, were obtained. On the basis of these observed concentrations, the median depositional fluxes of NH₄⁺ species over rural, suburban, urban and industrial areas have been estimated to be 10, 13, 18 and $26 \ \mu \ eq \ m^{-2} \ yr^{-1}$ respectively and for NO₃ species the depositional fluxes have been estimated to be 18, 14, 26 and 29 μ eq m⁻² yr⁻¹ respectively⁴⁵.

It is quite evident from these data that, so far, the urban areas are observed to have the highest depositional fluxes of both of NH_4^+ and NO_3^- species, but the NO_3^- concentrations in the precipitations over rural areas have also been found to be quite high, which is expected to significantly influence the total input quantities of nitrogen species in the agriculture eco-systems. However, this is more of indicative in nature at present, as pointed out by Kulshrestha *et al.*⁴⁵ that the problems related to rather low monitoring stations density which is lower by a factor of 10 compared to monitoring stations in the country. This makes the deciphering of regional depositional patterns of NH_4^+

and NO_3^- fluxes rather difficult. Recently⁴⁶, a multi-model evaluation made for nitrogen and sulphur deposition on regional and global scales through twenty-three atmospheric chemistry transport models, found that the models strongly over-estimated the NH₄ depositions for the Indian region by an average 350 mg (N) m⁻² yr⁻¹. This was attributed due to over-estimation of NH₄ emissions for the region or due to biological degradation of unstabilized samples collected by monitoring stations. On the other hand, the modelled nitrate depositions are strongly underestimated by 130 mg (N) m⁻² yr⁻¹. These evaluations point out the extent of uncertainties that exist in depositional fluxes of ammonia and nitrate for the Indian region.

Conclusion

The estimation of emission and deposition of reactive nitrogenous species for the Indian region, reported so far, has been covered in this article; but data are still scarce and suffers from various deficiencies like non-availability of country-specific emission factors, lack of adequate monitoring stations and data quality. The uncertainties in N₂O emission estimation from Indian agriculture are also because of diverse soil and climatic conditions, different management practices and socio-economic status of the farmers. Therefore, an appropriate national exercise is needed to formulate and address the deficiencies and gaps in order to make quantitative estimations of emission of various reactive nitrogenous species and their depositional fluxes, to clearly understand the nitrogen cycle at a national level. This will not only improve estimates of emission and related impact assessments, but also provide a baseline from which future emission trajectories may be developed to identify and evaluate mitigation strategies.

- Mosier, A. R., Wassmann, R., Verchot, L., King, J. and Palm, C., Methane and nitrogen oxide fluxes in tropical agricultural soils: Sources, sinks and mechanisms. *Environ. Dev. Sustain.*, 2004, 6, 11–49.
- Benton, J., Fuhrer, J. and Gimeno, B. S., An international cooperative programme indicates the widespread occurrence of ozone injury on crops. *Agric. Ecosyst. Environ.*, 2000, **78**, 19–30.
- Crutzen, P., The role of NO and NO₂ in the chemistry of the troposphere and stratosphere. *Annu. Rev. Earth Planet. Sci.*, 1979, 7, 443–472.
- Brasseur, G. P., Orlando, J. J. and Tyndall, G. S., Atmospheric Chemistry and Global Change, Oxford University Press, New York, 1999.
- Galloway, J. N. et al., Nitrogen cycles: Past, present and future. Biogeochemistry, 2004, 70, 153–226.
- Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. H., Cowling, E. B. and Cosby, R. J., The nitrogen cascade. *BioScience*, 2003, 53, 341–356.
- IPCC (Intergovernmental Panel on Climate Change), Fourth Assessment Report, Working Group-I Report – The Physical Science Basis, 2007; <u>www.ipcc.ch</u>.
- IPCC, Guidelines for national greenhouse gas inventories, IGES, Japan, 2006; <u>www.ipcc.ch</u>.

CURRENT SCIENCE, VOL. 94, NO. 11, 10 JUNE 2008

- Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J. and van Kessel, C., Efficiency of fertilizer nitrogen in cereal production: Retrospect and prospects. *Adv. Agron.*, 2005, 87, 85–156.
- Hutchinson, G. L. and Mosier, A. R., Improved soil cover method for field measurement of nitrous oxide fluxes. *Soil Sci. Soc. Am. J.*, 1981, **45**, 311–316.
- Parashar, D. C., Kulshrestha, U. C. and Sharma, C., Anthropogenic emission of NO_x, NH₃ and N₂O in India. *Nutr. Cycling Agroecosyst.*, 1998, **52**, 255–259.
- ALGAS, National Report on Asia Least Cost Greenhouse Gas Abatement Strategy, Ministry of Environment and Forests, Government of India, 1998.
- Garg, A., Bhattacharya, Sumana, Shukla, P. R. and Dadhwal, V. K., Regional and sectoral assessment of greenhouse gas emission in India. *Atmos. Environ.*, 2001, **35**, 2679–2695.
- 14. IPCC, Guidelines for National Greenhouse Gas Inventories, Oxford University Press, UK, 1996; www.ipcc.ch.
- Bhatia, A., Pathak, H. and Aggarwal, P. K., Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. *Curr. Sci.*, 2004, 87, 317–324.
- INC, India's Initial National Communication to the United Nations Framework Convention on Climate Change, Ministry of Environment and Forests, Government of India, 2004, p. 392.
- Aggarwal, P. K., Kalra, N., Chander, S. and Pathak, H., InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. *Agric. Syst.*, 2006, 89, 1–25.
- Pathak, H., Li, C. and Wassmann, R., Greenhouse gas emission from Indian rice fields: Calibration and upscaling using the DNDC model. *Biogeosciences*, 2005, 2, 113–123.
- Bhatia, A., Aggarwal, P. K. and Pathak, H., Simulating greenhouse gas emission from Indian rice fields using the InfoCrop Model. *Int. Rice Res. Notes*, 2007, **32**, 38–40.
- Garg, A., Shukla, P. R. and Kapshe, M., The sectoral trends of multigas emission inventory of India. *Atmos. Environ.*, 2006, 40, 4608–4620.
- Holland, E. A. and Lamarque, J. F., Modeling bio-atmospheric coupling of the nitrogen cycle through NO_x emission and NO_y deposition. *Nutr. Cycling Agroecosyst.*, 1997, 48, 7–24.
- Singh, A., Gangopadhyay, S., Nanda, P. K., Bhattacharya, S., Sharma, C. and Bhan, C., Trends of greenhouse gas emission from the road transport sector in India. *Sci. Total Environ.*, 2008, **390**, 124–131.
- Mittal, M. L. and Sharma, C., Anthropogenic emission from energy activities in India: Generation and source characterization – Emission from vehicles in India (Part-II), 2004; <u>www.osc.edu/</u><u>pcrm/emission</u>.
- Saxena, M., Jain, A. K. and Singal, S., Indian auto fuel policy and its role in environment. *Sci. Cult.*, 2002, 68, 292–302.
- Mittal, M. L. and Sharma, C., Anthropogenic emission from energy activities in India: Generation and source characterization Emission from thermal power plants in India (Part-I), 2004; www.osc.edu/pcrm/emission.
- Gupta, P. K. *et al.*, Residue burning in rice-wheat cropping system: Causes and implications. *Curr. Sci.*, 2004, 87, 1713–1717.
- Yevich, R. and Logan, J. A., An assessment of biofuel use and burning of agricultural waste in the developing world. *Global Bio*geochem. Cycles, 2003, 17, 1095.
- Streets, D. G., Yarber, K. F., Woo, J. H. and Carmichael, G. R., Biomass burning in Asia: Annual and seasonal estimates and atmospheric emission. *Global Biogeochem. Cycles*, 2003, 17, 1099.
- Bhattacharya, S. and Mitra, A. P., Greenhouse gas emission in India. Global Change Scientific Report Number 11, Centre on Global Change, National Physical Laboratory, New Delhi, May 1998.
- Gupta, P. K. et al., GHG emission from biomass burning: Field burning of agricultural crop residue. In *Climate Change and India:*

Uncertainty Reduction in Greenhouse Gas Inventory Estimates (eds Mitra, A. P. *et al.*), University Press (India) Pvt Ltd, Hyderabad, 2004, pp. 258–279.

- Sahai, S. *et al.*, A study for development of emission factors for trace gases and carbonaceous particulate species from *in-situ* burning of wheat straw in agricultural fields in India. *Atmos. Environ.*, 2007 (in press).
- Williams, E. J., Hutchinson, G. L. and Fehsenfeld, F. C., NO_x and N₂O emission from soil. *Global Biogeochem. Cycles*, 1992, 6, 351–388.
- Conrad, R., Soil microorganisms as controllers of atmospheric trace gases (H₂, CO, CH₄, OCS, N₂O and NO). *Microbiol. Rev.*, 1996, **60**, 609–640.
- Davidson, E. A. and Kingerlee, W., A global inventory of nitric oxide emission from soils. *Nutr. Cycling Agroecosyst.*, 1997, 48, 37-50.
- Veldkamp, E. and Keller, M., Fertilizer-induced nitric oxide emission from agricultural soils. *Nutr. Cycling Agroecosyst.*, 1997, 48, 51–58.
- Adhya, T. K., Pathak, H. and Chhabra, A., N-fertilizers and gaseous N-emission from rice-based cropping systems. In *Agricultural Nitrogen Use and its Environmental Implications* (eds Abrol, Y. P., Raghuram, N. and Sachdev, M. S.), IK International Publishing House Pvt Ltd, New Delhi, 2007, pp. 459–476.
- Yan, X., Du, L., Shi, S. and Xing, G., Nitrous oxide emission from wetland rice soil as affected by the application of controlled availability fertilizers and mid-season aeration. *Biol. Fertil. Soils*, 2000, **32**, 60–66.
- Katyal, J. C., Singh, B., Vlek, P. L. G. and Buresh, R. J., Efficient nitrogen use as affected by urea application and irrigation sequence. *Soil Sci. Soc. Am. J.*, 1987, **51**, 366–370.
- Aulakh, M. S. and Singh, B., Nitrogen losses and N-use efficiency in porous soils. *Nutr. Cycling Agroecosyst.*, 1997, 47, 197-212.
- Banerjee, B., Pathak, H. and Aggarwal, P. K., Effects of dicyandiamide, farmyard manure and irrigation on ammonia volatilization from an alluvial soil in rice (*Oryza sativa* L.) and wheat (*Triticum aestivum* L.) cropping system. *Biol. Fertil. Soils*, 2002, 36, 207–214.
- Asman, W. A. H., Ammonia emission in Europe: Updated emission and emission variations. Report No. 22841008, National Institute of Public Health and Environmental Protection, 1992.
- 42. Pathak, H., Li, C., Wassmann, R. and Ladha, J. K., Simulation of nitrogen balance in the rice-wheat systems of the Indo-Gangetic plains. *Soil Sci. Soc. Am. J.*, 2006, **70**, 1612–1622.

- Streets, D. G. *et al.*, An inventory of gaseous and primary aerosol emission in Asia in the year 2000. *J. Geophys. Res. D*, 2003, **108**, 8809.
- Van Aardenne, J. A., Carmichael, G. R., Levy II. H., Streets, D. G. and Hordijk, L., Anthropogenic NO_x emission in Asia in the period 1990–2200. *Atmos. Environ.*, 1999, **33**, 633–646.
- Kulshrestha, U. C., Granat, L., Engardt, M. and Roshe, H., Review of precipitation monitoring studies in India – A search for regional patterns. *Atmos. Environ.*, 2005, **39**, 7403–7419.
- Dentner, F. *et al.*, Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. *Global Biogeochem. Cycles*, 2006, 20.
- Majumdar, D., Kumar, S., Pathak, H., Jain, M. C. and Kumar, U., Reducing nitrous oxide emission from an irrigated rice field of North India with nitrification inhibitors. *Agric. Ecosyst. Environ.*, 2000, **81**, 163–169.
- Kumar, U., Jain, M. C., Pathak, H., Kumar, S. and Majumdar, D., Nitrous oxide emission from different fertilizers and its mitigation by nitrification inhibitors in irrigated rice. *Biol. Fertil. Soils*, 2000, 32, 474–478.
- Ghosh, S., Majumdar, D. and Jain, M. C., Nitrous oxide emission from kharif and rabi legumes grown on an alluvial soil. *Biol. Fertil. Soils*, 2002, 35, 473–478.
- Pathak, H., Bhatia, A., Shiv Prasad, Jain, M. C., Kumar, S., Singh, S. and Kumar, U., Emission of nitrous oxide from soil in rice– wheat systems of Indo-Gangetic plains of India. *Environ. Monit. Assess.*, 2002, **77**, 163–178.
- Majumdar, D., Pathak, H., Kumar, S. and Jain, M. C., Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors. *Agric. Ecosyst. Environ.*, 2002, **91**, 283–293.
- Sudhakara, K. and Prasad, R., Ammonia volatilization losses from prilled urea, urea super granuals and coated USG in rice fields. *Plant Soil*, 1986, 94, 293–295.
- Sarkar, M. C., Banerjee, N. K., Rana, D. S. and Uppal, K. S., Field measurements of ammonia volatilization losses of nitrogen from urea applied to wheat. *Fert. News*, 1991, 25–28.
- Santra, G. H., Das, D. K. and Mandal, L. N., Loss of nitrogen through ammonia volatilization from flooded rice fields. *J. Indian Soc. Soil Sci.*, 1988, 36, 652–659.
- Patel, S. K., Panda, D. and Mohanty, S. K., Relative ammonia loss from urea based fertilizers applied to rice under different hydrological situations. *Fert. Res.*, 1989, **19**, 113–119.
- Chauhan, H. S. and Mishra, B., Ammonia volatilization from a flooded rice field with amended urea materials. *Fert. Res.*, 1989, 19, 57–63.